ENERGY SAVING in RAS

Investment and functioning cost of low energy treatment systems

optimal size of the treatment devices for minimal consumption of energy

Noam Mozes
Head of Mariculture Dev., Fishery & Aquaculture Dep.
Ministry of Agriculture Rural Development, Israel
noamm@moag.gov.il
Energy in RAS is used mainly for gas transfer (and combined nitrification in some cases) through water & air pumping.

Treatment
- Oxygen supply
- CO₂ removal
- Nitrification
- Solid filtration
- Denitrification
- pH control
- Temperature control
- Photoperiod
- Disinfection

Action
- Water Pumping
- Air pumping
- Mechanical energy gas transfer, rotating & agitation
- Heating
- Illumination

Production cost breakdown (avg. of 3 pilot systems 100ton)
- Feed 26%
- Investment return 25%
- Energy + oxygen 13%
- Water 2%
- Work 8%
- Miscellaneous 8%
- Materials, packing, Insurance 6%

Investment breakdown (avg. of 3 pilot systems 100ton)
- Rearing structure 45%
- Water treatment 22%
- Farming equipment 1%
- Auxiliary 2%
- Feeding & control 3%
- Miscellaneous 8%
- Infrastructure 7%
Water pumping (for recirculation)

\[P = \frac{\gamma \cdot Q \cdot H}{\eta} \]

- \(P \) = Pumping power (W)
- \(\gamma \) = Specific gravity of water (N/m\(^3\))
- \(Q_W \) = Flow rate of water (m\(^3\)/sec)
- \(H \) = Total pumping head (m)
- \(\eta \) = Pumping efficiency (%)

Fish rearing volume

\[H = \sum \{H_Z, H_L, H_V, H_P\} \]

- \(H_Z \) - water level difference
- \(H_L \) - head loss due to friction
- \(H_V \) - velocity head
- \(H_P \) - pressure head

In Low Head RAS – minimize all and each of \(H \) components
Head loss

\[H_L = K_L \times \frac{V^2}{2g} \]

- \(H_L \) = local head loss due to friction on pipes, fittings, valves

- Low water velocity
- Wide cross sections
- Minimum parts (valves)

Pumping height \(H_Z \)

- **High Head \(H_Z \) (m)**
- **Low Head \(H_Z \) (m)**

- 6-10m
- 0.2m

<table>
<thead>
<tr>
<th></th>
<th>Pumping head (H_Z) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.H.</td>
<td>0.2</td>
</tr>
<tr>
<td>H.H</td>
<td>6</td>
</tr>
<tr>
<td>Ratio LH/HH</td>
<td>1:30</td>
</tr>
</tbody>
</table>
Pumping Efficiency

- HH water pump efficiency ≈ 75% – 90%
- LH water pump efficiency is low
- Air Lift water pumping efficiency ≈ 25% – 30%

Air lift pumping efficiency:
Air pumping energy = 10 w/m³ air
G/L = 20%
Lifting H = 0.2 m
Water pumping power = 2.8 w/m³ water
Pumping efficiency = 28%

Advantage of scale

- Improved efficiency of engines as size increase
- Scaling up and aggregation of power sources (engines)
Flow rate of water (recirculation) – Q

- Water flow rate is designed to treat metabolites and gas exchange according to fish requirements.

Removing of CO₂ by stripping

HH systems
Low flow rates

CO₂ removal vs. water flow rate
(one pass, feeding= 1kg/d/m³ rearing volume)

- Dissolved:
 - 30-50 gr
- Gases
 - 500-850 gr

High flow rates
LH systems
Flow rate of water (recirculation)

- Supplying DO by oxygenation & aeration

Low flow rate
- Pure oxygen
 - High pressure oxygenation
 - Direct oxygenation
 - LHO
 - U Tube

High flow rates
- Aeration is feasible
Summary of flow rate of water (recirculation)

Power summary table (for gas exchange)

<table>
<thead>
<tr>
<th></th>
<th>Pumping head H_z</th>
<th>Pumping efficiency η</th>
<th>Water flow rate Q (or ER)</th>
<th>Production rate</th>
<th>Energy consumption (for gas exchange)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>%</td>
<td>m3/h/m3 rearing vol. or (1/h)</td>
<td>kg fish /m3/y</td>
<td>kWh/kg fish</td>
</tr>
<tr>
<td>L.H.</td>
<td>0.1-0.4</td>
<td>25-40</td>
<td>20-30</td>
<td>80-100</td>
<td>4-5</td>
</tr>
<tr>
<td>H.H</td>
<td>6-12</td>
<td>75-90</td>
<td>1-2</td>
<td>100-150</td>
<td>4-5 *</td>
</tr>
</tbody>
</table>

* Not including pure oxygen additional cost ≈ 0.5 $$/kg fish
System configuration

High Head system
One main cycle treatment

Low Head system
Multi cycle treatment

- **TAN removal + solid filtration**
- **Solids, Nitrate, & P removal**
- **DO supply**
- **CO₂ removal**

High Head system

- **Solid filtration**
- **TAN removal**
- **CO₂ removal**

Low Head system

- **DO supply CO₂ removal**
- **TAN removal + solid filtration**
- **Solids, Nitrate, & P removal**

Qₜreatment
RT ≈ 1 h

Q₂₉ gas exch.
RT ≈ 2-3 min

QₜAN removal
RT ≈ 1 h

Q₂₉AN removal
RT ≈ 1 D

Images and descriptions are present, illustrating the flow and treatment processes for each system.
Cycle I – Air lift performances

Results on “Kora”的 Airlift model MK21

CO₂ stripping results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CO₂/DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kₖₐ</td>
<td>0.3–0.4</td>
</tr>
<tr>
<td>CTR/OTR</td>
<td>≈2</td>
</tr>
</tbody>
</table>

CTR = CO₂ transfer rate (@ 8 mg/l = 1600% saturation)

OTR = Oxygen transfer rate (at 80% saturation)

SOTR = Standard Oxygen Transfer Rate

SAE = Standard Aeration Efficiency

Q = Water flow rate

Aeration improvements – back aeration

“Mega-Flow” system – patented by “Kora”
Cycle II – Nitrification & Solid removal

Nitrification biofilter

- Water flow rate ≈ 1–2 vol/h (in HH & LH systems) is sufficient.
- Biofilter size:

<table>
<thead>
<tr>
<th></th>
<th>Typical Nitrification Biofilter</th>
<th>Media specific surface area</th>
<th>Media volume</th>
<th>Pumping Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>Submerged</td>
<td>(m²/m³)</td>
<td>(m³/kg feed/d)</td>
<td>(m)</td>
</tr>
<tr>
<td>HH</td>
<td>Trickling</td>
<td>200</td>
<td>0.5</td>
<td>6</td>
</tr>
</tbody>
</table>

- Nitrification rate of 0.5 gTAN/m²/d

Solid filtration

- Low head up-flow bead filter – head loss of 1–2 cm.

Fine solid removal

- Low head foam fractionation, using water flow at low pressure or other low energy methods
Construction costs of fish tanks & heat loss per unit volume (related to wall surface area) reduces as fish tank size increases.
Open questions

1. Design DO (& CO\(_2\)) concentration at different temperature and its effect on oxygen supply.

2. High levels of CO\(_2\) in HH (oxygen enriched) system versus limited DO gradient in LH (aeration based) systems.

3. Importance of fine solid filtration vs. fish requirements.

4. Ways of significant reduction in capital \ investment costs.

Seginer & Mozes, in prep.