SPECIAL EXTENDED ARTICLE:

What new methods have been developed?

Energy efficiency in fisheries and aquaculture

Sea cage gene banks for fisheries management
ADVANCING AQUACULTURE AROUND THE WORLD

Global experience, local expertise and healthcare solutions for improved performance and sustainability in fish farming

www.aqua.merck-animal-health.com
From the EAS President

Jean-Jacques Sabaut.
The first French President of EAS

EXTENDED FEATURE ARTICLE
New species for EU aquaculture: Exploring the biological and socio-economic potential of new/emerging candidate fish species for the expansion of the European aquaculture industry.

ARTICLES
Improving energy efficiency in fisheries and aquaculture
Sea cage holding of wild finfish as a gene banking reservoir and public enterprise to replenish native fishes.

OTHER NEWS
Feeding the pioneer – rainbow trout’s contribution to aqua feed development

AQUACULTURE MEETINGS
EAS Membership
Percid workshop in Ireland address’s issues in reproduction
Aquaculture meetings – calendar
AQUA 2018

Advertisements
Aller Aqua
AquaBiotech
Aqua 2018
Biomar AS
Evonik
Leiber
Marine Harvest
MSD Animal Health
Noba Vital
Nutriad
Sparos

AQUACULTURE EUROPE
EAS is a non-profit society that aims at promoting contacts among all involved in aquaculture. EAS was founded in 1976. Aquaculture Europe is the members’ magazine of EAS.

Secretariat
European Aquaculture Society (EAS)
Slijkensesteenweg 4, BE-8400 Oostende, Belgium
Tel. +32 59 32 38 59
Email: eas@aquaeas.eu; http://www.aquaeas.eu

Board of Directors (2016-2018)
President: Bjørn Myrseth (Norway)
President-Elect: Gavin Bursell (Ireland)
Past-President: Sachi Kaushik (France)
Treasurer: Margriet Drouillon (Belgium)
Member: Henrice Jansen (The Netherlands)
Member: Elena Mente (Greece)
Member: Stefan Meyer (Germany)
Member: Hervé Migaud (UK)
Member: Hilde Toften (Norway)

Membership
Membership of the EAS includes the Aquaculture Europe magazine (2 issues/year; institutional and sponsoring members receive 2 paper copies), Aquaculture Europe e-mail publication (6 issues/year), Online access to our peer reviewed journal Aquaculture International (AQUI). Institutional Members of EAS also receive one free half page advert per year in the magazine.

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>Standard Price</th>
<th>Reduced Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual member</td>
<td>€97.50</td>
<td>€67.50</td>
</tr>
<tr>
<td>Institutional member</td>
<td>€307.50</td>
<td>€207.50</td>
</tr>
<tr>
<td>Life member**</td>
<td>€727.50</td>
<td></td>
</tr>
<tr>
<td>Student member</td>
<td>€60</td>
<td></td>
</tr>
</tbody>
</table>

€ 7.50 for handling charges is included in above prices (mandatory, except for student membership)

*Reduced membership fees are available for:
- students (copy of current student card required)
- retired persons (certification of retired status required)
- residents of certain countries (see www.aquaeas.eu)

**Individual Life membership offers the general EAS benefits for full lifetime duration

See www.aquaeas.eu for more information on membership categories and benefits.

Subscription to the Aquaculture Europe Magazine: €85
For air mail add €36 to prices above
Design: James Lewis, Capamara Communications Inc.
EAS des not endorse advertised products or services. ©European Aquaculture Society, Oostende, Belgium.

Printed in Belgium ISSN 0773-6940
Dear EAS member,

On August 5th, I received the very sad news that Jean Jacques Sabaut had suddenly passed away. Jean Jacques was President of EAS from 1998 to 1990 and did an excellent job as EAS’s first French president. He helped with promoting EAS in France as well as aquaculture as CEO of Biomar in France. EAS has lost a long-term friend and supporter.

But there is also good news in this EAS Magazine. There is an extended article about the results from the EU project DIVERSIFY. The objective of DIVERSIFY is to help development of “new” species in aquaculture in Europe. It has sub-projects on Atlantic halibut, greater amberjack, grey mullet, meagre, pikeperch and wreckfish. This consortium has made a great job and a stream of new results is coming. But has “Diversify” tried to cover too many species? Would not concentration and more efforts into two or three species have been better? And is five years long enough to develop new species that only spawn once a year? Most likely not, but it is an excellent start. 9 years would have been much better for seeing commercial results and production. The Japanese started experiments with artificial propagation of tuna around 1980 and it is only recently that commercial production based on hatchery reared fry has started.

This edition of the magazine also contains news on perch cultivation and past EAS president Rosa Flos has an interesting article on energy use in aquaculture. I would just like to let you know here that the first electric work boat has been put into service in Norway. It is a 14m long boat powered by an electric motor and is fitted with large batteries.

Registrations for our Aquaculture Europe 2017 in Dubrovnik point to a participation of more than 1000 persons, with a number of very interesting conference sessions and industry forums, including one on tuna production, one on flat oysters, another on Mediterranean co-operation and more from the DIVERSIFY project.

I look forward very much to seeing you in Dubrovnik next month!

Bjørn Myrseth
EAS Past President Jean-Jacques Sabaut left us suddenly on Saturday 5 August 2017. A fish nutritionist who founded the feed company Aqualim in France and later became responsible for the Mediterranean region for Biomar, he worked tirelessly to enhance French aquaculture production and was a strong supporter of EAS in its early days, becoming its President from 1998 to 1990. Jean-Jacques was honoured with the FEAP Award for Excellence in European Aquaculture in 2006.

Born in April 1946, Jean-Jacques was interested in the sea at a very early age and went on to study for a DEA (Master) in Biological Oceanography at the University of Paris. Here and at marine biology training courses in different French coastal laboratories at that time, he met several life-long friends who have contributed to this obituary.

He started his research career at the Fish Nutrition laboratory, INRA at Jouy en Josas, France in the early seventies under the direction of Pierre Luquet. He was the first to work on the protein and amino acid requirements of the European gilthead seabream. The feeding trials undertaken at CNEXO Brest aquaculture unit, resulted in innovative pioneering work that remains today as the only quantitative data available for this species. It also created the basis of a long-standing spirit of scientific cooperation between the two Institutes, as well as a strong and durable friendship with many people.

Within the small, emerging world that was European aquaculture, Jean-Jacques acquired additional hands-on knowledge of fish nutrition and feeding, in France and in USA, and chose his career path, preferring the production and industry sector over that of research, in which so many actors within EAS are present. He maintained and developed professional and personal links with colleagues from INRA, CNEXO (then IFREMER), CÉMAGREF and other bodies, whose ideas he appreciated and whose work he followed. This phase of his life was marked by his participation in several institutional delegation visits to leading countries in aquaculture R&D, including Scotland (1972), China (1980) and Chile (1988). For the first French official aquaculture mission to China, Jean-Jacques was chosen by the French Ministry of Foreign Affairs to represent the production and industry sector and this allowed him to formulate and share very strong impressions on this still-closed country during the 3 intensive weeks of the trip.

His professional career was brilliant, from the development of Aqualim (first ever initiative of developing specific feeds for fish with an original name), a subsidiary of the Grands Moulins de Paris, to his integration in the Biomar group, including the extension of fish feed production in the Mediterranean, and during its expansive growth during the 1990 and 2000s.

continued on page 6
IN MEMORIAM

JEAN-JACQUES SABAUT CONTINUED

His dynamism and commitment to the production sector was supplemented by his strong desire to promote representation of aquaculture and he was the founder of the French Association for the Development of Aquaculture (ADA). An EAS National Representative for France for several years, he was first elected to the EAS Board in 1982 and becoming its first French President in 1988. It was also around this time that Jean-Jacques was one of the leading instigators of the Bordeaux Aquaculture trade event, with which EAS had a fruitful partnership, organising several Aquaculture Europe events alongside this popular meeting place for aquaculture producers and suppliers.

More recently, he committed many efforts to the French Interprofessional Committee for Aquaculture Products – the CIPA – bringing his expertise to the creation and operation of this important French organization. Finally, he was a representative in the newly-founded Fish Feed Committee of the European Federation of Compound Feed Manufacturers (FEFAC).

At its annual General Assembly in 2006, Jean Jacques was presented the prestigious FEAP Award for Excellence in European Aquaculture, selected from nominations of the National Aquaculture Associations that are members of the FEAP. A glowing tribute indeed to his contribution to the growth of European marine and freshwater aquaculture.

Despite some difficulties related to a diving accident during his university training, Jean-Jacques has been an incessant global traveller – in Europe, in America and in the depths of Asia. Over several decades, many friends had the opportunity to get together either at the occasion of conferences, New Year celebrations, birthdays or retirement parties, and with shellfish picking trips near his Bordeaux-region home on equinox tides.

But moreover, to all his friends, his and his wife Geneviève’s house was always open, with a very warm welcome and a festive spirit – often ending with a lot of singing of seafaring songs. His thirst for knowledge had not left him during his retirement years and during many voyages of discovery, he brought the pertinence of his remarks, his warm presence and very often friendly help to all of us.

Many of the present or past actors of this period shared again excellent moments with him and Geneviève at the occasion of the celebration of EAS’ 40th anniversary, just a year ago in Edinburgh (Jean-Jacques is 5th from the right of EAS Past Presidents in the photo below).

Prepared, in their profound grief, by four EAS Past Presidents and just a few of Jean Jacques’ dear and close friends.

NOBACITHIN AQUA

- Higher survival and growth
- Better resistance to stress
- Prevention of malformations
- Improve water stability of food particles
- Reduce leaching of water soluble nutrients
- Antioxidant
- Reduce accumulation of lipid droplets
- Higher levels of plasma lipoproteins
- Higher levels of epithelial enzymes
- Better essential lipid composition of the fish

“NOBACITHIN AQUA IS A LIQUID LECITHIN BLEND WITH A HIGH ENERGY LEVEL AND MANY NUTRITIONAL BENEFITS. IT IS SUITABLE FOR LARVAE, JUVENILE, AND GROWER DIETS FOR MANY SPECIES OF FISH AND CRUSTACEANS.”

Noba Vital Lipids
P.O. Box 67016, 1060 JA Amsterdam
www.noba.nl/en
+31 (0)20-2192994
The European Commission project DIVERSIFY (FP7-KBBE-2013, GA 603121) started in December 2013, with the objective of carrying out focused research in a number of new/emerging finfish species, in order to support the diversification of the European aquaculture industry and thus contribute to its sustainable expansion. The project has a total budget of 11.8 million € for its 5-year duration and it is coordinated by Dr. Constantinos C. Mylonas of the Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), one of the three institutes of the Hellenic Center for Marine Research (HCMR).

The DIVERSIFY consortium includes more than hundred senior scientists from twenty research and academic institutions, three Large Enterprises, eight Small and Medium Enterprises (SME), five Professional Associations and one consumer NGO (Table 1).

Figure 1: A group photo during the latest Annual Coordination Meeting, which was held at Palau Macaya, Barcelona Spain (17-19 January 2017).

MYLONAS, C.C., HELLENIC CENTER FOR MARINE RESEARCH, CRETE, GREECE (PROJECT COORDINATOR) MYLONAS@HCMR.GR
ROBLES, R., CENTRO TECNOLÓGICO DE LA ACUICULTURA DE ANDALUCIA - CTAQUA, SPAIN (DISSEMINATION LEADER) R.ROBLES@CTAQUA.ES
ESTÉVEZ, A., IRTA-CENTRE DE SANT CARLES DE LA RÀPITA, SPAIN (MEAGRE LEADER) ALICIA.ESTEVES@IRTA.CAT
PAPANDROULAKIS, N., HELLENIC CENTER FOR MARINE RESEARCH, CRETE, GREECE (GREATER AMBERJACK LEADER) NPAP@HCMR.GR
FONTAINE, P., UNIVERSITY OF LOURNAINE, FRANCE (PIKEPERCH LEADER) P.FONTAINE@UNIV-LOURNAINE.FR
NORBERG, B., INSTITUTE OF MARINE RESEARCH, NORWAY (ATLANTIC HALIBUT LEADER) BIRGITTA.NORBERG@IMR.NO
ALVAREZ-BLÁZQUEZ B., INSTITUTO ESPAÑOL DE OCEANOGRAFÍA, CENTRO OCEANOGRAFICO DE VIGO, SPAIN (WRECKFISH LEADER) BLANCA.ALVAREZ@VI.IEO.ES
KOVEN, B., NATIONAL CENTER FOR MARICULTURE, IOLR, FILAT, ISRAEL (GREY MULLET LEADER) BMKOVEN@GMAIL.COM
GEMMA TACKEN, STICHTING WAGENINGEN RESEARCH, NETHERLANDS (SOCIOECONOMICS LEADER), GEMMA.TACKEN@WUR.NL

The European Commission project DIVERSIFY (FP7-KBBE-2013, GA 603121) started in December 2013, with the objective of carrying out focused research in a number of new/emerging finfish species, in order to support the diversification of the European aquaculture industry and thus contribute to its sustainable expansion. The project has a total budget of 11.8 million € for its 5-year duration and it is coordinated by Dr. Constantinos C. Mylonas of the Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), one of the three institutes of the Hellenic Center for Marine Research (HCMR). The DIVERSIFY consortium includes more than hundred senior scientists (Fig. 1) from twenty research and academic institutions, three Large Enterprises, eight Small and Medium Enterprises (SME), five Professional Associations and one consumer NGO (Table 1).

continued on page 8
The project DIVERSIFY (www.diversifyfish.eu) has identified a number of new/emerging finfish species, based both on their biological and economical potential, to cover the entire European geographic area and to stimulate different aquaculture types. Although the emphasis is on Mediterranean cage-culture, fish species suitable for cold-water, pond/extensive and fresh water aquaculture have been included as well (Aquaculture Europe 39(1) March 2014). These new/emerging species are fast growing and/or large finfishes marketed at a large size and can be processed into a range of products to provide the consumer with both a greater diversity of fish species and new value-added products. The fish species studied include meagre (Argyrosomus regius) and greater amberjack (Seriola dumerili) for warm-water marine cage culture, wreckfish (Polyprion americanus) for warm- and cool-water marine cage culture, Atlantic halibut (Hippoglossus hippoglossus) for marine cold-water culture, grey mullet (Mugil cephalus) a euryhaline herbivore for pond/extensive culture and pikeperch (Sander lucioperca) for freshwater intensive culture using recirculating aquaculture systems (RAS).

In the three-and-a-half years that DIVERSIFY has been running, a number of research activities have been carried out in the scientific disciplines of Reproduction and Genetics, Nutrition, Larval and Grow out husbandry, Fish health, Socioeconomics and Final product quality. As the project is approaching its conclusion in November 2018, significant progress has been made in all six species. To speed up the dissemination of these results to the interested stakeholders and the aquaculture industry, one-day species-specific workshops are being organized for 2018, to be carried out at different locations around Europe (see later for more information). Moreover, four promotional workshops are being organized in four European countries, to create awareness of the project findings in the area of socioeconomic, marketing and product development. These events are targeted for specialized audiences in the fish market sector, such as fish producers, processors and retailers, consumer organizations, and fisheries and aquaculture authorities.

A full-day special session for research results from DIVERSIFY is also planned during the Aquaculture Europe 2017 conference in Dubrovnik, Croatia (17-20 October 2017). In the present article, we are presenting some highlights of the major achievements of the project so far.

Participating organizations in DIVERSIFY

Greece: Institute of Marine Biology, Biotechnology and Aquaculture (HCMR/IMBBC); ARGOSARÓNIKOS FISHFARMS SA; AQUACULTURE FORKYS SA; IRIDA SA; Galaxidi Marine Farms S.A.; Hellenic Research House AE; VAS. GEITONAS & Co Ltd; Federation of Greek Maricultures.

Spain: Institut de Recerca i Tecnologia Agroalimentaries (IRTA-San Carles de la Rapita); Parque Científico y Tecnológico de la Universidad de Las Palmas de Gran Canaria; Centro Tecnológico de la Acuicultura de Andalucía (CTAQUA); Universidad de la Laguna; Instituto Español de Oceanografía; Asociación Empresarial de Productores de Cultivos Marinos-APROMAR; Conselleria do Medio Rural e do Mar-Xunta de Galicia; Ayuntamiento de A Coruña (Museos Científico Coruñeses); CANEXMAR SL; ANFACO-CECOPESCA.

France: French Research Institute for the Exploitation of the Sea (IFREMER); Université de Lorraine

Israel: Israel Oceanographic and Limnological Research-National Center for Mariculture; DOR AQUACULTURE Ltd

Norway: Institute of Marine Research, National Institute of Nutrition and Seafood Research; Skretting Aquaculture Research Center AS; Stirling White Halibut AS

The Netherlands: Stichting Wageningen Research (previously DLO/LEI); Eindhoven University of Technology

United Kingdom: The University of Aberdeen

Italy: Università degli Studi di Bari «Aldo Moro»

Belgium: Université de Namur; European Food Information Council; Fish2Be; S.A.

Denmark: Technical University of Denmark, Aarhus University (MAPP Center)

Germany: German Association of Fish Processors (Bundes Verband Fisch, BVFi E.V.)

Hungary: Hungarian Aquaculture Association (Mayar Ákvakültra Szövetség, MASZ)
MEAGRE

Meagre is considered an emerging species that has been cultured increasingly in Europe in the last two decades, though in relatively limited quantities compared to gilthead seabream (*Sparus aurata*) and European seabass (*Dicentrarchus labrax*). Some of the attractive attributes of meagre include large size, good processing yield, low fat content, excellent taste and firm texture (Monfort, 2010). A survey of meagre producers carried out during the proposal stage of DIVERSIFY identified the principal bottlenecks to the expansion of the industry (Aquaculture Europe 40(1) March 2015). These include limited genetic variation of the available broodstocks, variable growth rates and fish health related issues, such as the wide occurrence of systemic granulomatosis (Elkesh et al., 2012), which may stem from the fact that no specific diets have been developed for this fish. Also, socioeconomic factors have been identified as bottlenecks, including the need for a more expanded market and diversification of available products beyond the whole fresh fish.

To address the issue of limited genetic variation in the broodstocks, DIVERSIFY carried out a genetic characterization of different meagre broodstocks in Europe and evaluation of available variability. Eighteen microsatellite markers (Short Tandem Repeats, STRs) were used to genetically characterize 13 meagre broodstocks held in aquaculture facilities from seven countries, ranging from Gran Canaria in Spain to Cyprus (Fig. 2). The analyses indicated that the genetic variation in captive broodstocks is more than adequate to form a base population in breeding programs, even though some broodstocks could benefit from the addition of new breeders. The mean number of alleles and observed heterozygosity were estimated at 3.7 and 0.48, respectively, with the captive populations showing lower mean number of alleles and observed heterozygosity than wild populations (around 3 times and 18% lower, respectively). Population genetics analyses using AMOVA revealed that 18.2% of the variation was found among studied broodstocks, while the remaining 81.8% was located within populations. Moreover, a Factorial Correspondence Analysis showed two clusters; in the first cluster, there seems to be a correlation with the geographical distribution of populations (Atlantic Vs Mediterranean), while in the second there is only the population from Turkey.

The next part of the genetic work for meagre was to characterize for the first time the muscle and liver transcriptome in the species, in order to base future physiology performance. This was done through transcriptome sequencing and RNA-Seq; the assembled transcripts were assigned to a wide range of biological processes including growth, reproduction and behavior. The whole transcriptome has been scanned to identify thousands of markers that may have impact on the functional role of protein-coding genes. The marker search revealed a total of 48,526 high-quality Single Nucleotide Polymorphism (SNP) markers and 20,582 STR markers. The relatively low rate of polymorphism reported might be indicative of inbreeding in the particular broodstock used.

In order to construct a genetic linkage map in meagre and perform preliminary Quantitative Trait loci (QTL) analysis, we used the double-digest restriction-site associate DNA (ddRAD) methodology to genotype two full-sib families and constructed a genetic linkage map that included 731 markers organized in 27 linkage groups (LG), which means 3 LGs-chromosomes more than the haploid number determined in the karyotype of this species (n=24). Comparative genomic analyses through similarity searches revealed conserved synteny with more than one third of the loci having a region homologous to the European seabass genome. Lastly, we completed a genome scan for QTLs that affect body weight (BW) and total length (TL) in fish from five full-sib families using the markers developed for continued on page 10
the linkage map of meagre distributed across 27 LGs. Model mapping from the two larger families identified 5 QTLs on only two LGs (11 and 20) that exhibited significant evidence of linkage at the genome level. Multiple QTLs on LG20 seem to affect both BW and TL, and were located at close positions, suggesting that the same genetic factors may control variability in these traits and are expected to be of great value in future Marker Assisted Selection (MAS) programmes.

Reproduction is no longer considered a bottleneck in meagre aquaculture, since recent studies have produced efficient protocols for the control of reproduction and the induction of spawning in aquaculture (Duncan et al., 2013; Mylonas et al., 2015; Mylonas et al., 2016). Nevertheless, DIVERSIFY developed further techniques to assist in the implementation of breeding selection programs, such as (a) paired-spawning of fish in tanks, and (b) in vitro fertilization methods. For the first objective, paired-spawning experiments were completed to determine the potential of paired spawning inductions with male rotation to perform a diallel cross-mating design as the basis of a breeding program. The efficacy of spawning pairs with male rotation was high (76%) and across the three experiments a total of 61 families out of 84 (full and half-sib) were produced that had >200,000 eggs of >80% fertilization success (Fig. 3). However, not all paired crosses with male rotation were successful, and a number of females after consecutive successful spawning inductions either failed to spawn or did not present vitellogenic oocytes, preventing their further induction as planned in the diallel cross design. This failure to spawn or maintain maturity status after successive successful spawning inductions appeared to represent a change in spawning kinetics from the prolonged (up to 17 weeks) induced spawning period observed in a previous same-pair experiment and other studies. This change in kinetics may be attributed to the stress of male rotation and consideration should be made that as the number of rotations increases, spawning pairs may fail or induced spawning may not be possible. However, together these experiments have shown that paired spawning of meagre is possible for the production of known families from parents with known phenotypes. Obtaining a large number of families with adequate fecundities that can be used on a commercial scale from crosses of selected breeders with desired phenotypes is a prerequisite for a breeding program.

Since the development of strip spawning with in vitro fertilization methods is necessary for the meagre aquaculture industry (as an alternative to paired-spawning), in order to facilitate planned crosses between selected breeders, the following work was also undertaken in DIVERSIFY (Fig. 4). Females with advanced stages of maturity were induced to ovulate with a single injection of 15 μg kg⁻¹ gonadotropin releasing hormone agonist (GnRHa). The injection was applied at 20:00-22:00 hours and the females held separate from males in darkness until being checked for ovulation. Checks for ovulation were made every 2.5 hours from 35 to 45 hours post GnRHa injection. When ovulated eggs were obtained, in vitro fertilization was made and egg quality assessed by determining the percentage of developing eggs. An injection of GnRHa was also applied to males, and sperm quality was assessed. Ratios of sperm to eggs were tested, from approximately 3,000 to 500,000 spermatozoa per egg. Ovulated eggs were observed from 35 hours onwards. Optimal egg quality was observed at 38–39 hours after the GnRHa injection. From 35 to 38–39 hours there was a slight increase in egg quality and the ease with which eggs could be stripped, indicating that after 35–38 hours there was a possibility that eggs were not fully ovulated. After 38–39 hours, there was a decline in egg quality.
quality to 43-44 hours. Sperm quality was maintained without decline for up to 7 hours in Leibovitz medium and sperm quality did not appear to affect fertilization success. The in vitro fertilization was made by rapidly mixing eggs, sperm and seawater simultaneously, and the first 30 seconds after activation were identified as the optimal period for fertilization. The optimal ratio of sperm to eggs to obtain high percentage of fertilization was above 200,000 spermatozoa per egg. The protocol was used successfully in a large factorial cross of 120 in vitro fertilizations using either fresh or cryopreserved sperm.

One of the most important bottlenecks of meagre production is the occurrence of systemic granulomatosis (SG), a pathological condition affecting the majority of farmed populations. Systemic granulomatosis is characterized by multiple granulomas in all soft tissues, which progressively become calcified and necrotic. The aetiology of the disease is unknown, however it is suspected that it is related to nutritional factors. One of the objectives of DIVERSIFY is to identify potential nutritional causes of SG via several feeding trials. These included the effect of vitamin D, calcium (Ca) and Phosphorous (P) and Ca/P ratios, and the effect of fishmeal (FM) substitution of the diets with plant proteins (PP) and P supplementation.

The development of SG was not prevented by vitamin D3 (Fig. 5). The organs that seemed to be affected first from SG were the kidney and the liver. The other soft tissues exhibited granulomas after the second month of the feeding trial, mainly visible by microscope. Although the addition of vitamin D3 did not prevent the development of SG in meagre, the study provided a significant lead concerning the pathophysiology of SG that will further assist the detailed description of this peculiar disease. In terms of the effect of Ca and P, although the fish of all groups exhibited granulomas, high P content in the diets (15 g kg⁻¹) ameliorated the severity of granulomatosis. Fish fed this diet exhibited a significantly lower percentage of liver and kidney calcification, and there was a significantly higher percentage of fish with no granulomas, compared to those fed the low and medium content of P. As before, the organs mostly affected by granulomatosis were the kidney, the liver and the spleen. This result is in accordance with the hypothesis that granulomatosis could be a metabolic disorder or a nutritional disease.

Accordingly, PP in the diets of meagre were found to affect negatively SG, while P supplementation in the PP diets did not affect the overall condition, but had a positive effect in the liver of the fish. Fish fed 60% FM were in a significantly better state regarding the total score of granulomas in all tissues. Furthermore, fish fed this diet exhibited a significantly lower percentage of liver and spleen calcification, and there was a significantly higher percentage of fish with no granulomas in these organs compared to those fed the PP, PP+Medium P and PP+High P diets. Phosphorus supplementation in the PP diets did not affect the overall condition of the fish (as assessed by the granuloma scoring system), but had a positive effect in the liver of the fish. Specifically, fish fed the PP+High P diet exhibited lower percentage of liver calcification and liver with macroscopically visible granulomas compared to those fed the PP and PP+Medium P diets.

Despite the fact that meagre larval rearing techniques are continually being improved, a number of potential causes of disease still need to be identified. One of the most important bottlenecks of meagre production is the occurrence of systemic granulomatosis (SG), a pathological condition affecting the majority of farmed populations. Systemic granulomatosis is characterized by multiple granulomas in all soft tissues, which progressively become calcified and necrotic. The aetiology of the disease is unknown, however it is suspected that it is related to nutritional factors. One of the objectives of DIVERSIFY is to identify potential nutritional causes of SG via several feeding trials. These included the effect of vitamin D, calcium (Ca) and Phosphorous (P) and Ca/P ratios, and the effect of fishmeal (FM) substitution of the diets with plant proteins (PP) and P supplementation.

The development of SG was not prevented by vitamin D3 (Fig. 5). The organs that seemed to be affected first from SG were the kidney and the liver. The other soft tissues exhibited granulomas after the second month of the feeding trial, mainly visible by microscope. Although the addition of vitamin D3 did not prevent the development of SG in meagre, the study provided a significant lead concerning the pathophysiology of SG that will further assist the detailed description of this peculiar disease. In terms of the effect of Ca and P, although the fish of all groups exhibited granulomas, high P content in the diets (15 g kg⁻¹) ameliorated the severity of granulomatosis. Fish fed this diet exhibited a significantly lower percentage of liver and kidney calcification, and there was a significantly higher percentage of fish with no granulomas, compared to those fed the low and medium content of P. As before, the organs mostly affected by granulomatosis were the kidney, the liver and the spleen. This result is in accordance with the hypothesis that granulomatosis could be a metabolic disorder or a nutritional disease. Accordingly, PP in the diets of meagre were found to affect negatively SG, while P supplementation in the PP diets did not affect the overall condition, but had a positive effect in the liver of the fish. Fish fed 60% FM were in a significantly better state regarding the total score of granulomas in all tissues. Furthermore, fish fed this diet exhibited a significantly lower percentage of liver and spleen calcification, and there was a significantly higher percentage of fish with no granulomas in these organs compared to those fed the PP, PP+Medium P and PP+High P diets. Phosphorus supplementation in the PP diets did not affect the overall condition of the fish (as assessed by the granuloma scoring system), but had a positive effect in the liver of the fish. Specifically, fish fed the PP+High P diet exhibited lower percentage of liver calcification and liver with macroscopically visible granulomas compared to those fed the PP and PP+Medium P diets.

As it is anticipated that future management of disease issues in meagre will require vaccines as part of the arsenal of approaches used, another objective of DIVERSIFY was to attempt to understand completely the chronology of events that occur—within the context of the immune system—during grow-out. Therefore, work was undertaken towards the characterization of the immune system to identify key immune molecules, as potential markers of immune system development and induction of antiviral and antibacterial responses. For markers of the adaptive immune system, a number of key genes were chosen for cloning, including RAG1/2, Ig and TcR genes, to determine when to vaccinate as the immune system matures. In addition, marker genes of inflammation (IL-1β, TNFα), antibacterial responses (antimicrobial peptides, such as piscidins and defensins) and the antiviral response (interferon, Mx) genes were also chosen. All of the genes initially targeted for this work have been isolated with the exception of transferrin and the expression assays have been established for these genes. Immune markers are now established for the innate, adaptive and inflammatory responses of the immune system as originally proposed. In total, we have 28 assays developed for genes of interest for the study of immune function in this species, and this will be of interest also to other groups and researchers studying this species outside of the DIVERSIFY consortium.

Finally in meagre, trials were conducted in order to improve the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre weaning diets and to achieve early weaning by increasing the fatty acid or micronutrient contents of meagre wean
have been studied extensively, weaning to dry diets remains an important bottleneck for this species, and it is thought to relate to the variable growth observed from early grow-out. Our study has demonstrated the importance of supplementation of meagre weaning diets with 2.4 mg kg⁻¹ of vitamin K, since the absence of this vitamin reduced markedly larval survival. However, meagre seemed to be very sensitive to hypervitaminosis D and only mildly sensitive to hypervitaminosis A, since supplementation with these vitamins lead to growth reduction. On the contrary, taurine supplementation did not have any effect in meagre larval performance. Also, based on the results of early weaning trials, meagre larvae can be weaned from live feed to artificial diets as early as 12 days post hatching (dph), but other important aspects for production success including larval performance and survival should be considered (Campoverde et al., 2017). Special care should be taken to avoid cannibalistic behaviour in the rearing tanks, by reducing the light intensity at the water surface and increasing larval feeding rate and daily doses. Early weaning did not affect the incidence of skeletal deformities in meagre, which is of special relevance in terms of assuring fry quality for further on-growing purposes.

GREATER AMBERJACK

This is a cosmopolitan species of great interest to the aquaculture sector due to its **excellent flesh quality** and **worldwide market availability**. Its rapid growth and large size (3 kg in 2 years) makes this species **very suitable for product diversification and development of value added products**. In the Mediterranean (Lovatelli and Holthus, 2008), farming started with capture-based activities using wild juveniles (Crespo et al., 1994), but until recently a very limited commercial activity with hatchery-produced individuals existed in Europe, in spite of the existing interest and efforts by various aquaculture companies in the Mediterranean. The major bottlenecks for the incorporation of greater amberjack in the EU aquaculture industry include lack of **reliable reproduction, production of adequate numbers of juveniles and fish health related issues**, with monogenean parasites causing mass mortalities in farmed fish (Grau et al., 2003; Montero et al., 2004).

In DIVERSIFY, a major effort in greater amberjack has been channeled toward the study of its reproduction (in the wild and captivity) and the development of reproduction control methods that will allow the production, on demand, of viable eggs of adequate quantity and quality (Aquaculture Europe 41(1) March 2016). This would enable the systematic research on the development of larval rearing methods for the species, and the production of juveniles to supply the aquaculture industry. Our work in greater amberjack reproduction began with a comparative study looking into the reproductive function of fish in the wild and trying to identify the potential source of the reproductive dysfunctions observed in captivity (Zupa et al., 2017). Wild and captive-reared breeders were sampled in the Mediterranean Sea during three different phases of the reproductive cycle (Fig. 6): early gametogenesis (EARLY, late April-early May), advanced gametogenesis (ADVANCED, late May-early June) and spawning (SPAWNING, late June-July). Fish reproductive state was evaluated using the gonado-somatic index (GSI), histological analysis of the gonads and determination of sex steroid levels in the plasma, and correlated with leptin expression in the liver and gonad biochemical composition. The GSI and sex steroid levels were lower in captive-reared than in wild fish. During the ADVANCED period, when the wild greater amberjack breeders were already in spawning condition, ovaries of captive-reared breeders showed extensive atresia of late vitellogenic oocytes and spermatogenic activity ceased in the testes of half of the examined males. During the SPAWNING period, all captive-reared fish had regressed gonads, while wild breeders still displayed reproductive activity. Liver leptin expression and gonad proximate composition of wild and captive greater amberjack were similar. However, the gonads of captive-reared fish showed different total polar lipid contents, as well as specific lipid classes and fatty acid profiles with respect to wild individuals. This study underlines the need for an improvement in rearing technology for this species, which should include minimum handling during the reproductive season and the formulation of a specific diet to overcome the observed gonadal decrements of phospholipids, DHA (22:6n-3) and ARA (20:4n-6), compared to wild breeders.

For the acquisition of viable gametes, a number of different broodstocks were maintained in land-based facilities (Greece and Spain) and sea cages (Greece), and were monitored for reproductive maturation, implementing the principles of broodstock management established earlier. At the expected peak of the reproductive period, the breeders were examined for gonadal development (vitellogenesis and sperm production), and were selected to test different hormonal spawning induction methods. These were based on the use of GnRHs, either in the form of liquid injections or sustained-release delivery systems (implants). Three major experiments have been undertaken. The first (FCPCT,
Gran Canaria, Spain) examined the efficacy of different hormonal induction methods on wild-caught breeders from the eastern Atlantic Ocean stock, maintained in tanks. The second (IEO, Tenerife, Spain) examined the efficacy of different doses of GnRHa implants on F1 breeders of the eastern Atlantic Ocean stock. The third set of experiments (HCMR, Greece) examined the timing of application (early, mid, late season), the hormonal induction method (GnRHa injections vs implants) and the dose of GnRHa used, on wild-caught breeders from the Mediterranean Sea stock maintained in sea cages during the year.

For the experiments at FCPCT, breeders with an average weight of 10.7 ± 2.3 kg were distributed in three circular tanks of 40-m³. In tank 1 (2 ± 5), the broodstock was not induced and was allowed to spawn spontaneously. In tank 2 (4 ± 3), three individuals of each sex were selected and were injected with GnRHa at 20 μg kg⁻¹ BW. In tank 3 (4 ± 3), three individuals of each sex were also selected and were induced with 500 μg GnRHa implants. Natural spawns started on 1 June 2014 and ended on 18 October, obtaining a total of 23 spawns at temperatures of 21.5-24.5°C (Table 2). The first GnRHa injection was given on 3 June and the last one that resulted in spawning was given on 21 October. The first GnRHa implant was given on 3 June and the last one that resulted in spawning was given on 14 October. The number of spawns per induction was significantly higher in females treated with the GnRHa implants they were 32 ± 34, 77 ± 34 and 69 ± 16%, respectively. With GnRHa injections the percentages for the three parameters were, respectively, 58 ± 26, 91 ± 25 and 58 ± 23% and with the GnRHa implants they were 32 ± 34, 77 ± 34 and 49 ± 27%. This study concluded that in the conditions of photoperiod and water temperature of the Canary Islands, it is possible to obtain natural spawnings of a small percentage of wild-caught greater amberjack maintained in captivity during three years in tanks with a volume of 40 m³. These spawns were better than those obtained by induction with GnRHa injection or implants. However, the majority of breeders would require a hormonal therapy to complete maturation and undergo spawning.

For the experiments at IEO, the broodstock consisted of 14 fish born in captivity (F1 generation) between 2005 and 2009 from a wild-caught broodstock. Fish were maintained during the year in two outdoor covered 50-m³ tanks, supplied with well water (10 renewals day⁻¹) at natural water temperature and ambient photoperiod. The fish were sampled four times during the spawning season (May, June, July and September) of two consecutive years (2015-2016), and each time (except in September) they were treated with implants at a dose of 25 or 75 μg kg⁻¹ GnRHa, respectively, for the two years, in order to examine the effect of treatment dose on spawning performance and egg quality (Fig. 7). Using the 75 μg GnRHa dose, a total of 52 spawns were obtained during a period of 72 days. The number of spawns obtained in the successive post GnRHa-treatment periods decreased, as well as the number of eggs released (Table 4). After the 1st treatment, a period of 31 days between the first and the last spawning was observed, while the eggs were collected almost daily (29 spawning events). However, after the 2nd treatment, a total of 15 spawnings were recorded during the first 16 days and no eggs were collected the later days. The eggs released after the 3rd GnRHa treatment were collected after 8 spawning events during the 9 days following treatment. Mean fertilization changed through the spawning period after each treatment, reaching its highest values after the 1st and 2nd GnRHa treatment, and a significant decrease was observed after the 3rd treatment. On the other hand, no significant differences were observed in hatching, 1-day embryo survival and 3-day larval survival after successive GnRHa treatment. The study of the lower dose (25 μg kg⁻¹ GnRHa in 2016) produced similar results in terms of reproductive performance and egg quality.

The third set of experiments was undertaken at a number of tank and sea cage facilities in Greece,

Table 2. Number of greater amberjack females that spawned, number of spawns and time of natural spawns and latency period for GnRHa injections and implants (FCPCT, Gran Canaria, Spain).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Number of females that spawned</th>
<th>Number of inductions</th>
<th>Number of spawns</th>
<th>Spawns/Induction</th>
<th>Latency period (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural (Control)</td>
<td>2</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Injected</td>
<td>3</td>
<td>37</td>
<td>29</td>
<td>0.78 ± 0.53</td>
<td>43.06 ± 2.69</td>
</tr>
<tr>
<td>Implanted</td>
<td>3</td>
<td>17</td>
<td>38</td>
<td>2.23 ± 1.85</td>
<td>44.19 ± 7.44</td>
</tr>
</tbody>
</table>

* Results are expressed as means ± SD. Different superscripts in the same column indicate significant differences (P<0.01).

Table 3. Number of spawns obtained from greater amberjack broodstocks after treatment with GnRHa injections or implants, in comparison with spontaneously spawning fish (FCPCT, Gran Canaria, Spain).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Number of females that spawned</th>
<th>Number of eggs per female (x 10⁶)</th>
<th>Number of eggs per spawn (x 10⁶)</th>
<th>Number of eggs per kg of female per spawn (x 10³)</th>
<th>Latency period (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural (Control)</td>
<td>25.60</td>
<td>12.80</td>
<td>1.11±0.32</td>
<td>5.67±1.66</td>
<td></td>
</tr>
<tr>
<td>Injected</td>
<td>12.90</td>
<td>4.30</td>
<td>0.44±0.27</td>
<td>3.72±3.02</td>
<td></td>
</tr>
<tr>
<td>Implanted</td>
<td>10.53</td>
<td>3.51</td>
<td>0.28±0.29</td>
<td>2.52±2.73</td>
<td></td>
</tr>
</tbody>
</table>

* Results are expressed as means ± SD. Different superscripts in the same column indicate significant differences (P<0.01).
including the research facilities of HCMR, and the commercial operations of Galaxidi Marine Farms, Argosaronikos Fishfarms S.A. and Aquaculture FORKYS S.A. The first major finding of these studies was that maintaining greater amberjack breeders in land-based facilities supplied with the typical borehole water of commercial hatcheries does not allow full gametogenesis of the fish. This means that males do not spermiate adequately and females do not complete vitellogenesis to the stage of being able to be induced for spawning using GnRHa therapies. On the contrary, fish maintained in sea cages during the year completed gametogenesis adequately, and it was possible to induce them to spawn using exogenous hormones, after moving them temporarily to tanks for spawning (Fig. 8).

In one of the trials, wild-captured breeders (mean weight 17.0±2.6 kg) were kept in Argosaronikos Fishfarms S.A. in a 1,000-m³ cage during the year and were fed with a broodstock diet (Skretting, Vitalis Cal, 22 mm). Females were treated with either a GnRHa injection (20–25 μg kg⁻¹) or GnRHa implant, with an effective dose of 49–69 μg GnRHa kg⁻¹. To enhance spermiation and ensure adequate sperm production, all males were treated at the start of the induction with a GnRHa implant at a dose of 45–70 μg kg⁻¹. After being treated for spawning, fish were transferred to inland facilities, into four 23-m³ flow-through round tanks (n=3-4 females), at a 1:1 sex ratio. Females in the injected group were given a GnRHa injection every week for 3 weeks, whereas the implanted group was given a second implant after two weeks (a total of 3 GnRHa injections and 2 implants). Tank overflow egg collectors were examined three times a day, and fecundity and fertilization success were estimated immediately after egg collection. Spawning started 1 d after the 1st GnRHa treatment, as some females had oocytes already undergoing maturation (Fig. 9).

Implanted fish spawned 9–10 times after the 1st implant and only 4 times after the 2nd implant. Injected fish spawned 7, 3–5 and 1–3 times after the 1st, 2nd and 3rd injection, respectively. The highest daily or batch fecundity was produced by the GnRHa implanted fish and was 4,242,000 eggs tank⁻¹ 2 days after the

Table 4. Spawning and egg fecundity parameters (mean ± SEM) of greater amberjack broodstock induced to spawn using three consecutive GnRHa implant treatments. No statistically significant differences were observed (P<0.05) between different GnRHa treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Spawns (n)</th>
<th>Eggs spawn⁻¹kg⁻¹ (x1000 eggs)</th>
<th>Total eggs kg⁻¹ (x10⁶ eggs)</th>
<th>Total eggs (x10⁵ eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>2087±218</td>
<td>60.54</td>
<td>7.05</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2679±398</td>
<td>40.18</td>
<td>6.55</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1361±594</td>
<td>10.89</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Figure 7. Induction of spawning of F₁ greater amberjack breeders at the IEO facility in Tenerife, Spain. (left) weighing the breeders and (right) evaluating the diameter of the oocytes prior to the administration of the GnRHa implants.

Figure 8. Acquisition of ovarian biopsies from greater amberjack (top) maintained in sea cages during the year, and evaluation of the stage of development of the obtained oocytes (bottom), in order to select fish for treatment with hormones to induce spawning. After treatment, fish were moved to tanks for spawning and egg collection.

Figure 9. Acquisition of ovarian biopsies from greater amberjack (top) maintained in sea cages during the year, and evaluation of the stage of development of the obtained oocytes (bottom), in order to select fish for treatment with hormones to induce spawning. After treatment, fish were moved to tanks for spawning and egg collection.
1st treatment, while in the injected fish the highest fecundity was 2,454,000 eggs tank⁻¹. The GnRHa implanted fish produced 2.5X more eggs than the injected fish, with the same number of spawns. On the other hand, no differences were observed among the two treatment methods in terms of fertilization success, embryo survival, hatching or 5-day larval survival. The study demonstrated that GnRHa implants were more effective in this stock to induce spawning, contrary to what was observed for the eastern Atlantic Ocean wild-caught population (see earlier).

In the area of greater amberjack larval rearing, significant breakthroughs have been achieved, allowing the production of large numbers of juveniles for stocking into research and commercial sea cages (Fig. 10). The main objective of DIVERSIFY in this area was to improve the survival, growth and performance of greater amberjack larvae by defining the appropriate environmental and feeding conditions adequate for the species. Eggs from the different broodstocks of DIVERSIFY used for the spawning induction experiments, were provided to the larval rearing partners of the consortium to undertake a number of trials.

In one study that has been completed, optimum levels and ratios of essential fatty acids in relation to taurine (Tau) and combined Poly Unsaturated Fatty Acids (PUFA) and carotenoids in enrichment products were examined (Fig. 11). A list of the optimum levels and ratios of essential fatty acids and carotenoids that should be included in enrichment products for rotifers to be fed to greater amberjack larvae have been established. The results included the effects of essential fatty acids and carotenoids on (a) larval performance, continued on page 17.

Figure 9. Egg production (per tank, n=2) and fertilization success (%) of greater amberjack maintained in sea cages in Greece during the year, and placed in tanks (numbered 1 and 2 for each treatment) for spawning after treatment with GnRHa injections or implants (arrows on the x-axis).

Figure 10. Greater amberjack juveniles produced at HCMR, Greece (above) and transferred to sea cages for grow-out studies (below).

Figure 11. Relationship between (a) total length (mm) and (b) fresh weight (mg) and different levels of dietary Artemia DHA (22:6n-3) content in greater amberjack larvae 35 dph (mean ± S.D., n=5). Data are fitted to a quadratic regression analysis (F=yo+a+bx2).
Go against the flow
with AMINOTilapia®

Profit from precise formulation
Steer your feed formulation in a new cost-efficient
and sustainable direction. AMINOTilapia® delivers
precise recommendations for amino acid optimization
according to size, feeding level, production intensity
as well as factors like naturally occurring nutrient
sources. That means you can accelerate growth,
reduce feed dosage and minimize environmental
impact. The dynamic amino acid recommendation
tool AMINOTilapia® gives you knowledge you can
take to the bank.

animal-nutrition@evonik.com
www.evonik.com/animal-nutrition
differences between the conditions, as the higher applied during larval rearing. The results showed water exchange and airflow were similar to the ones 40,000 l tank respectively. The conditions regarding volume) were 10% and 4% per hour, while the airflow was set at 350 and 1400 ml min⁻¹ for the 2,000 and 40,000 l tank respectively. The conditions regarding hydrodynamic field in tanks of 2,000 and 40,000 l. The applied water exchange rates (as % of total water hydrodynamic field in tanks of 2,000 and 40,000 l. The applied water exchange rates (as % of total water volume) were 10% and 4% per hour, while the airflow was set at 350 and 1400 ml min⁻¹ for the 2,000 and 40,000 l tank respectively. The conditions regarding water exchange and airflow were similar to the ones applied during larval rearing. The results showed differences between the conditions, as the higher currents occurred in the 2,000 l tanks followed by the 40,000 l tanks. Significant differences, in total length and body weight, were observed between treatments, with the individuals from the 2,000 l tanks being larger. Results showed higher survival at the end of the experiment in 2,000 l tanks, independent of egg stacking density. This was particularly apparent in 2,000 l tanks stocked with 10 eggs/l⁻¹.

The photoperiod study showed a good performance with the survival of the larvae varying between 6% and 13.6%. The mean survival for the 18L:06D photo phase was slightly higher (10.6±4.2%), than the 24L:00D (8.2±3.1%). In terms of total length, larvae grew with an exponential rate of 0.310 d⁻¹ independent of photo phase. The trials revealed that the photoperiod affected the mRNA expression levels of IGF-I with higher levels for the 18L:06D group at 17 and 25 dph compared to the 24L:00D group. Additionally, there was a significant gradual increase in mRNA levels as development proceeded, which was observed only in the 18L:06D group with peak values at 25 dph. The mRNA levels of IGF-BP1 appeared to be generally stable during development, and increased expression levels were observed in the 18L:06D group compared to the 24L:00D group. The IGF-BP2 expression showed a gradual increase throughout development with statistically higher levels at 25 and 30 dph. Additionally, at 30 dph an effect of the photoperiod regime was observed with higher expression levels in the 18L:06D group compared to the 24L:00D group.

The study on the effect of tank color showed no significant differences in the growth of the larvae in terms of total length and body weight. Fish growth was exponential in terms of TL (black: 0.0481 d⁻¹, white: 0.0393 d⁻¹, green: 0.0355 d⁻¹) and wet weight (black: 0.1260 d⁻¹, white: 0.1970 d⁻¹, green: 0.171 d⁻¹). However, although lipase decreased similarly to amylase activity after 10 dph, alkaline protease activity was still high at 10-15 dph, and increased further in the oldest larvae (20-30 dph). Amylase activity was also higher at 12 dph for the intensive system larvae, whereas the opposite trend was observed for alkaline protease and lipase activities. According to the results, greater amberjack seem to use dietary proteins effectively from 20-30 dph.

In another study, the effect of tank hydrodynamics on larval performance was studied by estimating the hydrodynamic field in tanks of 2,000 and 40,000 l. The applied water exchange rates (as % of total water volume) were 10% and 4% per hour, while the airflow was set at 350 and 1400 ml min⁻¹ for the 2,000 and 40,000 l tank respectively. The conditions regarding water exchange and airflow were similar to the ones applied during larval rearing. The results showed differences between the conditions, as the higher (b) welfare and (c) fatty acid analysis, lipid classes, and carotenoid profiles of enrichment products, live preys and larvae.

Another study compared the semi-intensive and intensive larval rearing systems (Fig. 12). The gene expression of growth hormone (GH) releasing hormone (GHRH), GH, insulin-like growth factor (IGF)-I and –II, and IGF binding protein (BP)s were not affected by the rearing method. However, there was a gradual increase in their mRNA levels as development proceeded, with statistically significant differences observed at 20 dph with peak levels at 25 and 30 dph of IGF-1 and GHRH, respectively. In addition, IGF-II was higher at 5 dph compared to 2 and 10 dph, while GH exhibited higher mRNA levels at 5 and 15 dph. The study determining the effect of stocking density on larval performance showed the optimum egg density for the larval rearing of greater amberjack is between 25 and 50 eggs l⁻¹. There was a marked appearance of a number of different anomalies in the larval stage that could lead to a lower survival. The study of the ontogeny of the greater amberjack larval digestive system showed that the average enzyme activity measured for a particular age range was independent of the larval rearing conditions. In general terms, the pancreatic enzymes amylase and alkaline protease were more active in the youngest larvae compared to the 30 dph larvae, whereas pepsin followed the opposite trend, displaying almost no activity at 12 dph. Intensive rearing seemed to favour amylase, alkaline protease and pepsin activities in the older larvae. Amylase was highly active in the eggs, decreasing at 0-5 dph, while increasing from 5 to 10 dph. From 10 to 30 dph, carbohydrates displayed a less relevant role in larval metabolism. Lipase and alkaline protease activities showed an increasing trend from 0-5 to 5-10 dph. However, although lipase decreased similarly to amylase activity after 10 dph, alkaline protease activity was still high at 10-15 dph, and increased further in the oldest larvae (20-30 dph). Amylase activity was also higher at 12 dph for the intensive system larvae, whereas the opposite trend was observed for alkaline protease and lipase activities. According to the results, greater amberjack seem to use dietary proteins effectively from 20-30 dph.

In another study, the effect of tank hydrodynamics on larval performance was studied by estimating the hydrodynamic field in tanks of 2,000 and 40,000 l. The applied water exchange rates (as % of total water volume) were 10% and 4% per hour, while the airflow was set at 350 and 1400 ml min⁻¹ for the 2,000 and 40,000 l tank respectively. The conditions regarding water exchange and airflow were similar to the ones applied during larval rearing. The results showed differences between the conditions, as the higher...
way at 17 dph in fish reared in the white background compared to fish reared in the black and green backgrounds. This preliminary study provides for the first time information on the regulation of the various components of the IGF signaling pathway in greater amberjack and may serve for the better understanding of the complex relationship between background color and fish performance during early ontogeny. The results from the trials with the modified “light environment” improved survival an order of magnitude from any previous trial, reinforcing the validity of the tested hypothesis and indicate a clear technological step forward in the larval rearing of the greater amberjack.

In the area of fish health, progress has been made in all tasks included in the proposal. This included further mesocosm trials for the development of a rapid detection method for epitheliocystis, and screening of gill samples from different Greek fish farms (Fig. 13). Studies were undertaken on (a) the morphology and the incidence of monogenean parasites in greater amberjack skin, (b) the determination of environmental conditions that can modulate greater amberjack resistance to parasitic infection, (c) formulation of a diet supplemented with mucus stimulation products, and (d) standardization of monogenean cultures. Primers for the detection of 11 immune genes have been optimized for qPCR, ready for studies of mucosal defenses, with initial pathogen-associated molecular pattern (PAMP) stimulation in vivo revealing good induction at mucosal sites such as gills. Further grow out trials have been undertaken, to assess the relationship between monogenean parasite egg number and fish mortality, and the impact of several potential anti-monogenean treatments, with mannosse looking promising. Diagnosis of bacterial and viral infections was performed with juveniles, and Bacillus oceanisidiminis and Aeromonas spp. have been detected. Challenge trials were also undertaken to assess relative disease susceptibility to two bacterial species, namely Listonella anguillarum and Photobacterium damselae subsp. piscicida. The fish were found to be refractory to the former.

One of the objectives of the research in this area was to identify the effect of dietary regime on mucus immune barrier and modulate the resistance to parasite infection by adding immunostimulants to the diet. Immune potential of mucus defenses has been studied from the systemic point of view. The utilization of mucus stimulatory substances, such as mannan–oligosaccharides (MOS) or concentrated mannan—oligosaccharides (c–MOS), has been also evaluated. A histological study of the effects of monogenean parasitization on greater amberjack juveniles was conducted, and the potential of immunostimulants to reduce parasitic infection has been also assessed. The study, completed recently, concluded that dietary regime could alter mucus immunological properties. The addition of mucus stimulating products, and especially those based on concentrated mannan–oligosaccharides, enhance mucus immune potential and resistance to the ectoparasite Neobenedenia girelliae.

A trial was also conducted in order to determine how aquaculture-associated stressful conditions are affecting selected parameters. The processes selected were manipulation (high and low) and stocking density (high and low), both related with aquaculture practices and are necessary to manage stocks of greater amberjack. At the end of the experimental period, a stress challenge test was conducted. The treatment with the highest manipulation and density had reduced growth performance when compared to the treatment with low manipulation and low density, denoting that greater amberjack is highly sensitive to aquaculture procedures. High stocking density induced a decrease in mucus lysozyme activity. A similar effect was obtained for bacterial activity of the mucus, but no effects were found in peroxidase activity. These data are part of the results that have shown the immune potential of skin mucus of amberjack. Relative to other species, the mucosal surfaces of greater amberjack include a full repertoire of antimicrobial defenses that can vary with certain environmental conditions.

Pikeperch

This freshwater fish is considered to have the highest potential in Europe for inland aquaculture diversification. Pikeperch flesh has a neutral taste, thus lending itself to different forms of preparation, and the filets are without bones -- unlike carp, which competes on the same market segment. Year-round production of pikeperch requires constant high temperatures (24–26°C) to ensure relatively high growth rates (i.e., production of 1.2 kg fish in 15–18 months from non-selected strains), which is only feasible in RAS. These RAS also allow high densities of 80–100 kg m⁻³. Identified by a survey addressed to fish farmers in preparation for DIVERSIFY (Aquaculture Europe 40(2) Sept 2015), the major bottlenecks for further expansion of pikeperch culture today include (a) high sensitivity to stressors, handling and husbandry practices that result in high and sudden mortalities, (b) low larval survival (typically 5–10%) and high incidence of deformities, and (c) lack of knowledge of the genetic variability of the used broodstocks. Identification of genetic relationships among different broodstocks, inbreeding phenomena and loss of heterozygosity is important in aquaculture, since it may result in subsequent reproductive and productive failure (reduced progeny survival, growth, food conversion efficiency and increased frequency of deformities). It is also important to know how the domesticated stocks differ from their wild counterparts, which could potentially be a future source of fish to include in breeding programs. Overcoming the above bottlenecks is very important to reduce production costs and, therefore, expand the aquaculture production of pikeperch in the EU (Fig. 14).
The first task of DIVERSIFY for pikeperch was to assess the genetic variability of captive broodstocks in commercial farms in Europe operating in RAS, and then compare this variability with that of wild populations. The results have indicated that some broodstocks have adequate genetic variation, but as some of them originate from few fish, attention should be paid in the future to establish breeding programmes. In general, there was agreement with the stock origin and our studies provided evidence that pikeperch populations in Europe are part of at least two genetically differentiated groups. The first group is found in northern Europe from the Netherlands/Denmark to the West, Poland (at least) to the East, and Finland to the North. The second group comprises all remaining populations in Central Europe to as south as Tunisia (and probably Spain, Italy and northern Greece). Based on this grouping, it can be stated that most analyzed populations seemed to contain fish of a single origin; nevertheless, in few domesticated populations this ratio varied from 5-19%, possibly due to the mixing of fish from multiple sources. The objectives to evaluate the genetic variability of captive pikeperch broodstocks and make a comparison with wild individuals to define future breeding programs have been completed. A total of 21 populations/broodstocks were sampled and analyzed, which included 13 captive broodstocks and eight wild origin populations. The different stocks were grouped into three populations that were of Hungarian origin, Scandinavian origin and other origins (German, Polish and Tunisian). The different captive broodstock populations presented different levels of genetic variability that ranged from wide variability greater than observed in wild populations to broodstocks that had reduced genetic variability that may have been the result of loss of variability through inbreeding. For these broodstocks with reduced genetic variability, measures should be taken to introduce greater variation into the base population for future breeding programs.

In the area of pikeperch nutrition, trials have shown that pikeperch larvae require both high dietary inclusion levels of phospholipids and Long Chain (LC) PUFAs to perform optimally. A multifactorial screening trial of the importance of eight dietary factors (high or low levels) has been initiated and is still ongoing. Also, adding saline water to rearing does not improve growth, but can change the ability of pikeperch larvae to elongate and desaturate different fatty acids and phospholipids. An experiment investigating the consequence of various phospholipid levels and LC PUFAs on welfare indicators and stress physiology, behaviour and respiratory metabolism is currently ongoing. In the area of grow out, our studies identified the optimal conditions improving growth and welfare of pikeperch in aquaculture and characterized the effects of major husbandry and environmental factors on growth and physiological status of this species (Bækelandt et al., 2017). In a screening experiment, eight factors considered as relevant for the welfare of pikeperch were compared in two modalities using a fractional multifactorial design (2^8). Each experimental unit represented a combination of eight factors in two modalities, which included grading, stocking density (15 vs 30 kg/m³), feed type (floating vs sinking), light intensity (10 vs 100 lux), light spectrum (red vs white), photoperiod (long vs short), dissolved oxygen (60 vs 90 %) and temperature (21 vs 26°C). Fish sampling occurred on days 36 and 63. Stress markers – glucose, cortisol and brain serotonergic activity – and changes in humoral immune activities and immune gene expression in kidney were assessed. Light intensity and the type of feed clearly appeared as directive factors for pikeperch culture. A strong effect of the feed type was observed on the final individual weight, the specific growth rate and the weight heterogeneity. High light intensity affected survival. The main influence on physiological and immune status was imposed by light characteristics, including intensity, spectrum and photoperiod, as well as temperature.

In the area of larval rearing (Fig. 15), one of the objectives was to determine the effects of four environmental factors and their interactions on pikeperch production using a multifactorial approach. One of the most important results of the present study was that different behavioral traits were observed in very young pikeperch juveniles using several behavioural tests (cross maze, social and stressor tests). This implies that some personality traits appeared very early in the life of pikeperch, and could be inheritable characters. We know, for instance, that a gene mutation linked to growth factors may modify fish personality in zebrafish Danio rerio (Norton et al. 2011). It is also known that domestication may also act as a selection process for personality traits (Moretz et al. 2007). Most studies carried out on it recognized that personality is defined by behavioural traits consistent through time and/or contexts. In fish, most studies on personality were performed either on juveniles (aged between 6
months and 1 year) or adults, while very few focused on the early life stages. The main goal of this study in pikeperch was to characterize behavioural syndromes and to highlight the existence of a personality in young juvenile pikeperch. To study the consistency of behavioural responses of juvenile (50 and 64 days post-hatch) pikeperch (n = 41, TL = 5.8 ± 1.0 cm and BW = 1.6 ± 0.7 g), we performed three behavioural tests per fish: exploration (cross-maze), dyadic and restraint test. In the cross-maze test, exploratory fish were more active and bolder. In the dyadic test, fish with the highest number of contacts, showed also more approaches, orientations and avoidance behaviours. In the restraint test, bolder fish were more active and tried to escape more often. Consequently, the investigation of the different behavioural responses of each fish highlighted behavioural syndromes in this species. Furthermore, for the first time, we showed with a cross-context analysis that young juvenile pikeperch, responded in the same way to exploration and dyadic test, but their responses were opposite in the restraint test. Our results opened new opportunities for testing individual personality in very young fish that may help solving some aquaculture problems, such as the intra-cohort cannibalism.

Atlantic halibut

The Atlantic halibut is the world’s largest flatfish and can attain a weight of over 300 kg. It is highly prized at markets worldwide, but availability of wild Atlantic halibut has been decreasing. The fish has been classified as endangered on the IUCN red list and a complete ban was imposed on Icelandic fisheries, while stocks along the Norwegian coast are declining and under strict regulation. This has led to a higher market demand for Atlantic halibut than can be met by fisheries alone. Cultured Atlantic halibut has an excellent reputation, but has been rarely available outside specialty restaurants due to low annual production. However, it is now the marine aquaculture industry that has the fastest growth in terms of production, with an increase of 20% from 2015 to 2016. The Atlantic halibut is a semi-fat fish rich in omega-3 fatty acids, with a characteristic flaky white meat with few bones. These characteristics led to the inclusion of Atlantic halibut in DIVERSIFY, as a great candidate for fish species and product diversification in European cold-water aquaculture (Aquaculture Europe 41(2) Sept 2016). Despite a significant research effort between 1985 and 2000, the complicated life cycle of Atlantic halibut made aquaculture progress slow, and very little research funding has been allocated thereafter. The remaining bottlenecks for increased and stable production are related to a steady supply of fry and a need to decrease the production time. DIVERSIFY addresses these important bottlenecks with a coordinated research effort in reproduction, and larval nutrition and husbandry.

Advances have been made so far in all tasks in the area of Atlantic halibut reproduction (Fig. 16). Regarding the documentation of reproductive performance in wild-captured vs cultured female Atlantic halibut, there were actually few differences between fecundity, fertilization, hatching, egg size and hormone content between eggs from wild-caught and farmed females. However, although there were no significant differences, wild-caught females appeared to be more predictable spawners and gave fewer, but larger batches of eggs of very high quality (>85% fertilization). Farmed females also produced eggs of high quality when their ovulatory cycles were identified correctly and stripping was carried out close to ovulation, thus reducing or eliminating over-ripening (Fig. 17). However, for commercial as well as breeding purposes, it is not practical to rely solely on wild-caught females. As at both the Institute of Marine Research and Stirling White Halibut AS (Norway) relatively few farmed females produced eggs with fertilization rates >80-85% consistently, it may be necessary to include also wild-caught broodstock in future breeding groups, in order to ensure a broad enough genetic material. Identifying potential high-quality breeders and concentrating the strip-spawning effort on those females may be useful in order to reduce the considerable workload connected with artificial spawning and egg collection in Atlantic halibut. The other approach explored in the task included the use of GnRHAs implant therapy as a means to improve reproductive performance, and ensure (and regulate) ovulation using GnRHAs implants. The GnRHAs implants used did ensure and synchronize ovulations.

continued on page 22
ALLER GOLD² - A NEW GENERATION OF FEED

WITH “2” ALLER AQUA INTRODUCE A NEW GENERATION OF FEED. THE COMPOSITION OF THE FEEDS CHANGE WITH THE NATURAL VARIATION OF THE RAW MATERIALS.

- modern high quality feed
- high and stable performance
- best utilisation of nutrients
- smallest strain on external/internal environment

THE BEST FEED AND BEST OVERALL ECONOMY
of the treated females and were found not to affect egg quality or quantity.

In the area of nutrition and larval rearing, a protocol for weaning of Atlantic halibut at 28 days post first-feeding (dpff) has been developed and almost 100% of the larvae fed Otohime diet (Japan) were filling up their guts with feed after a 5 day adaptation period. Gut fullness was lower in the morning than in the evening, possibly because the larvae were measured before and after hand feeding and clay addition in the morning and in the evening, respectively. According to the evening measurements, larvae fed Artemia were almost full after 1 day and stayed full for the rest of the experiment. Larvae fed Otohime showed increasing fullness over the whole period and on day 5 almost 100% of the larvae were full in the evening. The fraction of larvae with food in their gut increased more slowly on Gemma and Aglonorse feeds. On the evening of day 5, a total of 12 and 15 larvae, respectively, out of 28 had filled guts, while no larvae had filled guts on these diets.

Left: Figure 16. Atlantic halibut breeders being examined for reproductive maturation at the IMR facilities (Norway).

Below: Figure 17. Egg production results from four farmed Atlantic halibut broodstock groups with different spawning periods at Stirling White Halibut AS, Norway. A. Total fecundity (number in bars = n of females). B. Relative fecundity. C. Average batch size (ml of eggs; number in bars=n of batches) and D. Average fertilization success.
A production strategy for on-grown *Artemia* has been established, which improves the nutritional value of *Artemia* with respect to protein, lipid and micronutrient contents. Growth and juvenile quality was excellent in larvae fed *Artemia* nauplii in this experiment, but not improved by feeding on-grown *Artemia* (Fig. 18). In the industry, the routine larval rearing method is to feed *Artemia* nauplii, with varying incidence of larvae with abnormal pigmentation and lack of eye migration, although the Atlantic halibut juvenile quality has improved in recent years. In this study, larvae fed the *Artemia* nauplii had perfect pigmentation and eye migration, so the juvenile quality could not be improved further by feeding on-grown *Artemia*. The nutrient concentrations of Atlantic halibut larvae fed *Artemia* nauplii and on-grown *Artemia* from 15 until 28 dpff were similar, except that the on-grown group had a slightly lower level of EPA than larvae fed nauplii, a difference that is probably biologically insignificant. This is another possible explanation of the lack of differences in growth and larval performance between the two treatments. It was very labor-intensive to produce the on-grown *Artemia* needed for the experiment, so on some occasions the on grown group had to be fed nauplii to get enough food. As the fish grow, more feed is needed and, due to capacity problems, the feeding period had to be shortened to last until 28 dpff instead of 45 dpff as was planned. These are all possible reasons that no differences were detected between the groups.

Wreckfish

Wreckfish is one of the largest Serranid species, reaching a size of 100 Kg, and it is found in deep waters almost throughout the world. Wreckfish is one of the most interesting new species for aquaculture, due to its fast growth, late reproductive maturation, high market price and limited fisheries landings. Its large size lends itself to processing and development of value added products, and its cosmopolitan distribution may enable EU exports. Lack of reproduction control and established larval rearing protocols are considered major bottlenecks preventing wreckfish aquaculture, and the clear biological and economical potential of this species justifies allocation of part of the effort of DIVERSIFY in bringing together almost all partners involved in Europe in wreckfish domestication.

Recently, an article has described the work and achievement of the DIVERSIFY project regarding wreckfish (Aquaculture Europe, 42(1) March 2017). Therefore, just a brief mention is made in this article of the latest information. Although significant progress has been made in the area of reproduction during the first 3 years of DIVERSIFY, development of effective larval rearing methods is still not at hand. The reproductive cycle of the species in captivity and the associated profiles of the sex steroids have been characterized recently, using a number of broodstocks from Spain and Greece (Fig. 19). Vitellogenesis begins in October and is completed between April–June, depending on geographic location and rearing temperature. Spontaneous spawning of viable, fertilized eggs has been accomplished in a number of broodstocks, but hatching success has been very limited (Fig. 20). Natural spawning occurs in a cycle of ~5 days. Males produced very good quality sperm during the reproductive season, and in some stocks they are spermiating for the whole year (under constant 15°C rearing conditions).

Egg quality and larval rearing continued to be problematic during the 2017 reproductive season, and we are still away from the development of a reliable larval rearing protocol for transfer to the industry. Efforts will continue in 2018, the last year of the project, and we hope for a better success.

Figure 18. Atlantic halibut larvae at the stage of first feeding, at the IMR facilities (Norway).

Figure 19. Wreckfish being sampled for ovarian biopsies and blood for the description of the annual reproductive cycle in Aquarium A Coruna (above) and HCMR (below).

Aquaculture Europe • Vol. 42(2) September 2017

continued on page 24
Grey mullet farming has been practiced for centuries, but production of this potentially invaluable source of animal protein in Europe has been small and non-intensive (Crosetti and Blaber, 2016). It is an euryhaline species, found throughout the world and is a rapid-growing, herbivorous species that can be reared over the wide geographical and temperature range of the Mediterranean basin (Fig. 21). As it is detritivorous in the wild, it has been stocked in fishponds to improve sediment quality and avoid oxygen depletion. Therefore, it can be an excellent candidate for the enhancement of aquaculture in earthen ponds, coastal lagoons, “valli” and deserted Salinas that exist throughout the EU Mediterranean countries. The development of FM-free feed will reduce the cost of aquaculture fish production, and will be more sustainable and environmentally friendly. In this way, grey mullet would be more acceptable to an increasingly aware consumer public that demands sustainability and lower environmental impact. Moreover, grey mullet aquaculture has the advantage of providing not only affordable whole fish and fillets, but also fish roe or “bottarga” in Italian, a high value product (>100 € kg⁻¹), whose market is expanding around the Mediterranean. Therefore, grey mullet has a great biological and economical potential for the diversification of fish species and product, and the development of value added products.

The future growth of the grey mullet aquaculture is limited by a number of bottlenecks, which are addressed in DIVERSIFY (Aquaculture Europe 39(1) March 2014). Firstly, controlling the reproductive cycle and improving egg quality via broodstock management and nutrition is necessary not only for the production of robust larvae, but also for producing high value bottarga. Secondly, development of a larval rearing protocol is necessary to reduce early mortalities, size dispersion as well as increasing metamorphic synchrony, which will lead to a supply of high quality juveniles. Finally, development of a sustainable, economical, FM-free grow out feed is needed, which would perform well under different environmental conditions of temperature, pond type, and water quality, thus broadening the geographical range of grey mullet aquaculture in Europe.

Lacking the natural spawning environment, captive grey mullet fail to reproduce spontaneously, largely due to a failure to undergo complete gametogenesis (Aizen et al., 2005). Therefore, DIVERSIFY first evaluated the effectiveness of hormone-based treatments on synchronizing gonadal development (Fig. 22). A combined treatment consisting of follicle stimulating hormone (FSH) and dopamine antagonist (metoclopramide) on spermatogenesis in males and follicle growth and maturation in females was tested. The methylotrophic yeast (Pichia pastoris) expression system was used to produce large quantities...
of bioactive recombinant single-chain FSH, which was used in a series of in vivo assays. Unlike the controls, the hormonally treated groups (injected with rFSH and metoclopramide during the onset of the reproductive season) demonstrated synchronized gonadal development within and between sexes, with higher rates, over time, of spermiating males and post-vitellogenic females. Once gonadal development was accomplished, we proceeded with the development of hormone-based treatments for inducing spawning. Spawning induction trials that timed the administration of GnRHa and metoclopramide with advanced stages of gamete maturation were relatively successful, producing tens of millions of fertilized eggs. Nevertheless, our results highlight two major problems: (i) the female’s failure to ovulate in 5 out of 12 spawning induction trials and (ii) the episodic fertilization success ranging between 0 to 98%, underlining the need to fine-tune further and optimize the hormone-based breeding protocol for captive grey mullet.

In the area of larval rearing, the objectives in DIVERSIFY are to (a) investigate environmental and nutritional factors that affect larval rearing, (b) determine the effect of co-feeding copepods and rotifers on digestive tract maturation and enzyme production and (c) determine when to wean larvae and to feed weaning diet type according to digestive tract maturation and the shift from carnivorous to omnivorous feeding (Fig. 23). Some of our results so far indicate that the beneficial effect of “green water” in the rearing tanks for larval grey mullet was derived predominantly from the resultant turbidity on prey ingestion rate (within the turbidity levels measured in this study) and less so to the algal type or biochemical content (i.e. fatty acid profile). Nevertheless, ingested algae by the larvae may have stimulated and improved gut maturation in early developing larvae, resulting in markedly improved survival during the juvenile stage. The algal treatments given to 2–23 dph larvae did not have a significant effect on older larvae and juveniles in terms of pancreatic and digestive tract enzyme activities. On the other hand, diet composition may have influenced the lipase and total alkaline protease specific activities. Nevertheless, overall the ontogeny and activity of the pancreatic and digestive tract enzymes measured appeared to be genetically programmed. The enzymatic activity of Alkaline Phosphatase and leu-ala peptidase individually and in ratio indicated gut maturation around 61 dph and an increasing amylase capacity to at least 79 dph. This suggests (a) the capacity to feed on micro- and macroalgae, as well as benthic organisms when the fish move to the lower saline and shallower waters of estuaries at this age and (b) when to include significant levels of low cost starch in prepared feeds in order to efficiently grow grey mullet following gut maturation. Also, studies on the taurine requirement at different stages of development during the larval rearing of grey mullet showed a significant effect of dietary taurine on larval growth and survival. This effect is strongest during rotifer feeding compared to Artemia feeding, which also influences significantly growth in later stages of larval development. Nevertheless, the results indicated that larvae fed both high taurine enriched rotifers and Artemia, survived and grew significantly better.

Socioeconomics (including new product development)

Besides the technical improvement of the selected species, the socio-economic research in DIVERSIFY includes applied market development approach solutions on perception of aquaculture products, market demand, buyer preferences, new product development, value adding and market development (Banović et al., 2016; Grigorakis, 2017; Lazo et al., 2016; Reinders et al., 2016). These outcomes will help the EU aquaculture sector and the supply industry in targeted marketing and improvement of its international competitive position.

The combination of biological and socioeconomic research activities planned in DIVERSIFY (Aquaculture Europe 39(1) March 2014) are expected to support the diversification of the aquaculture industry and help in expanding production, increasing aquaculture products and development of new markets. Specifically, the socioeconomics work has three main objectives: (a) find out the consumer market opportunities for the six new species (i.e. greater amberjack, pike perch, meagre, wreckfish, Atlantic halibut and grey mullet), (b) examine the business-to-business market opportunities for the species above and (c) develop business models for the new species on the basis of an online market test. These insights are being generated for the five largest European fish markets:

continued on page 26
France, Germany, Italy, Spain and the United Kingdom. Not all activities are finished yet, but some general insights are visible already.

A quantitative online study with 2,500 consumers in the above five focal countries demonstrated that some consumer segments are open to try new species (Fig. 24). Especially in Germany and Spain, consumers from the segment «involved innovators» are very open to new fish species. On the other hand, French and Italian consumers are interested in new fish species although more traditional in their fish choices (i.e. the «involved traditional» segment) and British consumers are less involved and more ambiguous in the product choices they make (i.e. the «ambiguous indifferent» segment).

The market analysis demonstrated that buyers (i.e. retailers) in the five countries find it very difficult to position the six new species in relation to the current species in the market. Both as wild catch and aquaculture products, they are all fairly unknown. However the buyers are open to welcome new species under the following conditions: (a) the product must be cultured in a sustainable way, (b) the product should be available as a fresh product (southern Europe) and as a frozen product (especially Germany), (c) the product must be easy to prepare and/or ready to eat, and (d) the product must be priced competitively. All these issues have been covered in DIVERSIFY. The feasibility study based on real cost prices of production is still going on. Sustainable production is covered in the reported biological research work packages (presented above), and in the socio economic work package convenience is included in the consumer oriented product development.

A qualitative study with 10 focus groups consisting of six participants each, undertaken across the five study markets (i.e. two focus groups per country) has identified the most promising product ideas for new fish products per investigated country (Table 5). In terms of general recommendations for new product development of selected fish species, the most important drivers and barriers for the choice of the new product ideas that are most relevant for consumers have been identified (Fig. 25). On the basis of this study, a long list of product ideas has been developed for the different countries. However, not all products were practically possible with the different fish species. Therefore, only a selection of products has been sensory-tested in the five countries among regular consumers of fish. This sensory test showed that all the products were well accepted, except for fish pate. Products with a lower degree of processing were those who generated higher expected scores and higher acceptability in the blind test. It seems reasonable to infer that products having a higher degree of processing would be more appropriate for consumers who do not like fish because of its taste, presence of bones, odour, etc. In these cases, the existence of different processed alternatives could be a good solution for those individuals looking for a more convenient and less “fishy” product.

Table 5. Preferred fish products per country, based on the six new/emerging fish species included in the DIVERSIFY project.

<table>
<thead>
<tr>
<th>Country</th>
<th>Description of the created and best voted product ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Fresh fish Carpaccio that can be used as starter for a hot meal or as sandwich filling. This Carpaccio is seasoned with ginger and chili and presented as scales of the fish. The product is produced environmentally sustainable. The packaging is a plate that looks like a round box with the compartments and transparent wheel on the top that you can turn to reach different sections.</td>
</tr>
<tr>
<td>Germany</td>
<td>Fresh fish fillet covered with herbs and spices in the transparent packaging. Different fillet size in the packaging conveying the product message through images and voice: ‘For him – Fish for the triathletes’; ‘For her – vacation in Provence’.</td>
</tr>
<tr>
<td>Italy</td>
<td>Fresh fish steak for grilling in the pan. Transparent packaging with a label that guarantees the origin of the product and communicates its quality, signs and references to tradition and respect for the environment.</td>
</tr>
<tr>
<td>Spain</td>
<td>Fish sausages and fish burgers. The main advantage of this product is that the product has no bones. The seasoning is very mild and therefore this product is therefore suitable for children. The product is produced environmentally sustainable.</td>
</tr>
<tr>
<td>UK</td>
<td>Fresh fish fillet with different ‘healthy’ seasoning and marinades separately packed that consumer can choose and vary depending on the occasion. This product is sold with recommendation for the appropriate vegetables and wine to accompany the dish. Product message: ‘Not two same dishes in a row; ‘You have it ready for you, healthy but still have the hectic lifestyle.’</td>
</tr>
</tbody>
</table>
To speed up the dissemination of the project’s results to the interested stakeholders and the aquaculture industry, one-day species-specific workshops are being organized for the Spring of 2018, to be carried out in different locations around Europe (Greece, Italy, France, Spain, Belgium, Norway). The location will be selected based on the aquaculture potential of each species and the Workshops will be will be hosted by the species leaders within the DIVERSIFY consortium, as follows:

1. Meagre, Alicia Estevez, IRTA, Spain
2. Greater amberjack, Nikos Papandroulakis, HCMR, Greece
3. Pikeperch, Pascal Fontaine, Uni. Lorraine, France
4. Atlantic halibut, Birgitta Norberg, IMR, Norway
5. Wreckfish, Blanca Alvarez, IEO, Spain
6. Grey mullet, William (Bill) Koven, IOLR-NCM, Israel

The workshops will be announced in the website of the project (www.diversifyfish.eu) at the end of 2017, and will be also advertised in relevant websites. In each workshop, researchers from within the DIVERSIFY consortium will present a summary of the work carried out and the production methods developed, in the different areas (Reproduction and Genetics, Nutrition, Larval and Grow out husbandry, Fish health, Final product quality and Socioeconomics). Relevant researchers from outside the consortium will also be invited to present their work. This will ensure that the participants are provided with the State-of-the-art of the scientific knowledge for each of the species, coming not only from DIVERSIFY, but also from other European or National initiatives. The workshops will be **free of charge** and will be open to any interested researcher, farmer or regulator, on a **first come-first served basis**.
An online experimental choice study with product mock-ups developed from the created product ideas from the qualitative study (Fig. 26) was conducted in the five study countries to identify the optimal intrinsic-extrinsic product quality profiles for earlier identified consumer segments (i.e. the involved innovators and the involved traditions). This study showed that country-of-origin and price come first when choosing new fish products, followed by quality certification (i.e. Aquaculture Stewardship Council – ASC logo), while nutrition and health claims appear to have varying and minimal impact, which is highly dependent on the type of product and level of processing and country. Thus, a certain degree of customisation is needed for certain products, depending on the level of processing and countries.

REFERENCES

Improving energy efficiency in fisheries and aquaculture

FLOS, R.* AND REIG, L.
DEPARTAMENT D’ENGINYERIA AGROALIMENTÀRIA I B I T E C N O L O G I A , UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONA TECH. C/ ESTEVE TERRADES 8, 08860 CASTELLDEFELS, SPAIN.
(*) CORRESPONDING AUTHOR: ROSA.FLOS@UPC.EDU

In the context of a necessary change in a new energy model development, there is a clear interest in analysing the strong and weak points of fisheries and aquaculture energy expenditure to reduce it. Both sectors have some common aspects and also evident specific energy saving strategies. The first aim of this article is to analyse the aspects that are common to fisheries and aquaculture related to energy consumption. Second, the specificities in each sector are analysed and some proposals for energy saving are offered.

Fisheries and aquaculture have some common aspects mainly related to the phase of commercialization and household consumption and also those related with the treatment of residues (figure 1). Energy is needed in transportation, preservation of products (temperature control both during transport as well as in the market), and during processing, both in industry fishing vessels as well as in the fisheries industries. Residues are generated at all levels including packages, oils and other materials related to transport, and organic wastes. It is important to differentiate between organic wastes produced at consumer level and those produced in the processing industry that can be considered nowadays as resources for other industry processes, besides organic wastes at home can be selected and collected to be recycled to obtain compost.

Fishery and aquaculture product marketing

Fisheries
Fisheries can be classified, in a first approach, following vessel size, business model and structure, and fishing gears used. Energy expenditure will depend on these aspects. Energy uses can be direct or indirect. The direct energy needs include the fuel for propulsion which will depend on the type of fishery, the energy used for operations inside the vessel (including fish processing), and the transport to the port as well as post fishing industrial activities. The indirect energy includes the solar energy that enters into the system through the trophic chain in fishery products, and also the energy used in the production of all supplies and infrastructures needed, which again will depend on the type of fisheries.

In fact, fishing activity can be separated in several categories: small scale, artisanal and coastal, with vessels shorter than 12 meters long, coastal industry with vessels from 12 to 24 meters long and a fishing industry at deep sea with vessels longer than 24 meters and 100 gross registered tons, some of those being factory vessels. The other very important issue will be the gear used in the fishery.

In the fishing activity some wastes or residues will be produced as nets, vessels, different materials, oils from machines but other residues as some organic wastes can be considered as resources in other industries, for example the by-products of the fish processing that can be used to produce fish meal and fish oil.

In figure 2 (page 29) the energy fluxes for fisheries are shown with the main inputs as energy needed before fishing (to build vessels and equipment etc.) , fuel for propulsion, and the energy fluxes from fisheries to other industries and to marketing phases. The control of temperature in all steps will be an important expenditure.

Expenditure in fuel for the European Union fishing fleet in 2008 was around 1.1 billion euros (the 23% of the total energy cost) (Anderson and Guillen 2010). But taking into account both the fuel cost and the incomes, several strong differences appear in the European fleet, for 2004, from a 6,3% for Faroe Islands to 24,6% for Lithuania (table 1) (Muir, 2015). Comparisons have to be taken with caution because reports from some countries covered different percentages of their fleets.
The reduction of fuel needed for fishing processes can be a good incentive for companies, but several factors have to be considered. Fuel needed depends on the distance of fisheries grounds as well as gears used, but the income will be related to the species obtained. It’s interesting to look at the examples of Norway and Galicia (Spain). In the Table 2 the productivity measured as fish tonnes caught per person and as tonnes of fuel per tonne of fish caught is compared. A higher productivity goes in parallel to an increase of fuel used, being the highest energy expenditure for offshore fresh fish trawlers, and the less expensive for the coastal net and line. But if we go to Table 3 we can see that species obtained by different fishing methods are very different in value expressed as €/kg. If we take the extreme cases we see that the pilchard (*Sardina pilchardus*) is the species that implies the lowest energy expenditure, so the lowest carbon footprint, but also one of the species having the lowest market values, and in the other end, the anglerfish (*Lophius piscatorius*) is the species whose fisheries imply the highest energy expenditure and highest carbon footprint and one of the species with a higher market value.

<table>
<thead>
<tr>
<th>Country</th>
<th>Fuel as percentage of revenue</th>
<th>Country</th>
<th>Fuel as percentage of revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faroe Islands</td>
<td>6.3</td>
<td>Germany</td>
<td>14.0</td>
</tr>
<tr>
<td>Denmark</td>
<td>7.3</td>
<td>United Kingdom</td>
<td>14.3</td>
</tr>
<tr>
<td>Iceland</td>
<td>7.7</td>
<td>Estonia</td>
<td>14.7</td>
</tr>
<tr>
<td>France</td>
<td>8.5</td>
<td>Portugal</td>
<td>14.9</td>
</tr>
<tr>
<td>Norway</td>
<td>9.1</td>
<td>Netherlands</td>
<td>16.0</td>
</tr>
<tr>
<td>Finland</td>
<td>9.9</td>
<td>Greece</td>
<td>17.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>11.5</td>
<td>Belgium</td>
<td>20.4</td>
</tr>
<tr>
<td>Italy</td>
<td>12.0</td>
<td>Latvia</td>
<td>21.3</td>
</tr>
<tr>
<td>Spain</td>
<td>12.4</td>
<td>Poland</td>
<td>23.4</td>
</tr>
<tr>
<td>Ireland</td>
<td>12.6</td>
<td>Lithuania</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td></td>
<td>13.0%</td>
</tr>
</tbody>
</table>

Table 1. Percentage of cost of fuel related to income in several European fisheries. (Muir, 2015).
Aquaculture

Two factors are very important to define the energy model: feeding and water management. Feed production is an energy expensive procedure and it has a significant impact on the energy efficiency of aquaculture. If water has to be managed pumps, pipes and a sewage management are needed and so an extra expenditure is generated. A general classification following both factors can be established (table 4). Of course there are other different models where some energy is used not for feed production but for food improvement as fertilizers, systems where there is some water management but not an expensive one taking advantage of sea movements as tides, etc. So, from pure extensive to pure intensive or super intensive productions several different models can be found, but always the most important factors defining the difference is the need of external feeding and water management actions.

Integrated multi trophic aquaculture (IMTA) deserves a special attention as far as energy reduction is concerned. In this model of production, the residues from one level are considered resources for the following level, combining the production of different organisms. Several companies have begun a first phase of implementation of this system under a European project (IDREEM, 2016) but the economic efficiency has yet to be demonstrated. In the figure 4 (page 32) the different steps of the IMTA concept are shown both from the point of view of energy as well as the reuse of fish and bivalves organic wastes, both particulate and dissolved. Fish, bivalves, algae and echinoderms are linked through the energy fluxes.

Two examples to show the energy fluxes and possible ways of energy saving, molluscs and intensive cage finfish production, are shown in figures 5 and 6. Other systems are available, as RAS (Recirculating Aquaculture Systems) that show an important reduction of space and water requirements, but contrarily they imply a high energy expenditure that could impair an energetic efficient model.

The most important energy input in the mussel production system is the solar energy; one way of increasing

<table>
<thead>
<tr>
<th>Fishing system</th>
<th>tonnes fuel/tonne</th>
<th>Carbon footprint tCO₂e/t</th>
<th>€/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>European hake, offshore longline</td>
<td>1.551</td>
<td>5.70</td>
<td>6.98</td>
</tr>
<tr>
<td>Atlantic horse mackerel, coastal trawl</td>
<td>0.316</td>
<td>1.18</td>
<td>2.77</td>
</tr>
<tr>
<td>European pilchard, coastal purse seine</td>
<td>0.175</td>
<td>0.74</td>
<td>3.00</td>
</tr>
<tr>
<td>Anglerfish, offshore trawling</td>
<td>2.547</td>
<td>9.38</td>
<td>11.10</td>
</tr>
<tr>
<td>Tuna, deep-sea purse seine, Indian ocean</td>
<td>0.313</td>
<td>1.21</td>
<td>17.25</td>
</tr>
<tr>
<td>Mussels, extensive aquaculture</td>
<td>0.013</td>
<td>1.17</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of fuel consumption (tonnes fuel/tonne fish) and carbon footprint (tonnes CO₂e /tonne) in Galician fishery systems (from Iribarren, et al. 2010) and fish value at the Barcelona Central Fish Market (€/kg 2016 annual average) (from MERCABARNA)

In the sea

<table>
<thead>
<tr>
<th>Water management</th>
<th>Feed use</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
the energy efficiency would be to combine mussel and algae production transforming mussels’ residues in resources for algae. Nevertheless, other energy needs as for boat construction and infrastructures, are not so important in this production model. Energy for transportation, temperature control as well as for packaging is also needed in different steps.

For finfish cage production the energy fluxes are diverse. Solar energy continues to play an important role, as it enters through the trophic chain and through agriculture, both of them a base for the feed industry. Feeds are produced using fish oil and meal obtained from fisheries, as well as cereals and legumes what altogether covers fish nutritional needs maintaining the organoleptic and nutritional quality of the aquaculture product. Certain amount of by-products from captured fish processing, as well as from pigs and poultry can also be used. The use as resources of what was time ago only residues is a good example of circular economy. The use of algae to produce fish feed would also be a strategy to increase energy efficiency.

In this example, compared with the mollusc example, more energy is needed for boat construction as well as for equipment and infrastructure, but the main difference is the energy expenditure to produce the feed. Here again, energy needs are important for temperature control and packaging in the marketing phase.

In intensive fish production energy allocation (table 5) will mainly depend on the species as well as on the production system, but feeding (because of the high energy expenditure in its production) will be the most important (78-97%) expenditure, being fuel (4-7%) a very small part of it. For mussels there is a high percentage allocated to fuel and structures, but not because of their absolute numbers importance, quite small compared with other productions, but because other parts are missing for this production as for example feeds.

<table>
<thead>
<tr>
<th></th>
<th>Salmon, intensive cages</th>
<th>Grouper/bass intensive cages</th>
<th>Tilapia, semi-intensive ponds</th>
<th>Mussels, longline</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJ/tonne edible product</td>
<td>142</td>
<td>262</td>
<td>40</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Contribution to energy expenditure (%)				
Structures	6	2	3	48
Equipment	<1	<1		5
Vehicles	<1			5
Feed	79	78	97	
Fuel & power	3	10		
Stock	4	7		
Others	6	3		

Table 5: Energy allocation in selected aquaculture systems (Stewart (1995) in Muir, 2015)
When energy allocations comparisons are done, it is very important to refer the energy to the edible portion of the fish produced or to its protein content. By doing this, species that seem to show an energy efficient production considering the whole fish, are not so efficient taking into account the protein or edible portion. Table 6 illustrates this perfectly. Comparisons between catfish in ponds feeding only, or carp in intensive recycle feed only versus salmon intensive in cages catfish needs only 0.625 tonnes diesel equivalent for tonne of whole fish, lower than the 1.4 tonnes of diesel equivalent per tonne of whole fish needed for salmon. But looking to the needs per unit of protein the energy expenditure for catfish (22.2) is higher than for salmon (17.2). For carp the energy for tonne of protein is even higher (77.25).

Carbon footprint in fisheries and aquaculture

The carbon footprint is an easy and clear way to define in which steps of a process attention has to be given in order to save energy and change the energetic model. In figures 7 and 8 there is a good comparison between fisheries and aquaculture (Winther, et al., 2009) showing that the biggest energy expenditure for aquaculture is in feed production, followed by transport from the production site to the consumer. This indicates clearly that all actions to reduce the energy cost of feed production (use of alternative and less energy costly materials, increase of feed conversion rate) and to reduce the distance between production sites and consumers (proximity marketing) will help in energy saving. This can mean an important change in consumer habits.

For fisheries the major energy cost is the fuel used in moving the vessels and also the energy to maintain the temperature. In this case the actions will be centred in the energy efficiency of vessels, shorter distances meaning less fuel needed, and all changes that allow to decrease the cost of temperature control. Obviously, the longer the distance to achieve the targeted market, the higher the impact of transport on carbon footprint. The long distances needed can be reduced with stock recovery policies, even if they are difficult to implement, but the change in energetic model ought to be the driving force.

Future trends and strong points:

Thinking of future trends means choosing strategies that could change the energy model, but they must be...
strategies that have some possibility to be implemented and, at the same time, to be economically viable in order to be accepted and promoted. The viability can be related to a decrease in economic costs (for example the need of less fuel) or an increase of sustainability and so the permanency of the activity in the future (for example the recovery of stocks). The actions can be proposed for one specific sector (aquaculture or fisheries) but, in some cases, they can have an impact in both which is much more interesting.

Some measures to increase energy savings in fisheries:

- Developing stock recovery policies
- Changing fishery gears for more sustainable models, or in a specific model to introduce technical improvements to make it more energetically efficient not to increase the fish caught. That can be one of the problems for some actions; the objective must look for a change in the energy model, not the increase of fishing.
- Changing the fishery system and the captured species, which implies a change in consumer’s habits.
- Fishing in nearer waters and disembarking in nearer ports.
- Modernizing the equipment and the design of vessels. Here again the problem can be that this might be seen as a way to increase fishing pressure and not a change in the model.
- Eliminating all subsidies for unsustainable gears, and promote sustainable practices through restricted zones only for sustainable fisheries.
- Increasing awareness and convincing consumers to buy local species and those coming from sustainable fisheries.

Some measures to increase energy savings in aquaculture:

- Decreasing the carbon footprint of fisheries has a direct impact on aquaculture by decreasing the energy used in feed production.
- Improving the conversion rate for fish feeds
- Optimizing fertilization in productions that use it
- Diversifying the origin of materials in feed production.
- Selecting species with a better feed conversion rate but also with highest edible portion rate.
- Diminishing the residues, for example decreasing mortality rates through good policies of diagnosis and prevention.
- Using always renewable energies when possible
- Using residues of one step as resources for other steps in the production chain (as for example multi trophic systems)

Some measures that are common for fisheries and aquaculture:

- Promoting proximity and sustainable species consumption.
- Using more efficient post-harvest equipment, for example improving refrigeration and freezing procedures
- Turning what were residues into resources for different industrial uses (For example using fish remainders from filleting, the chitin from exoskeletons, etc.) New questions arise, as for example, can residues be used to obtain biodiesels?
- Acting at distribution level; for example, in the presentation of products, vertical shelves, doors and covers to increase temperature control, increasing the efficiency in air conditioning of shops and storehouses.

References

With collapse of many fisheries, fish stock replenishment through stocking is of global importance and crucial tool of interest. The science of reliable stocking technology is growing, shepherded by a healthy climate of scientific debate. The new developments for this century-old fishery management tool could not be timelier (Leber et al., 2004).

Cultured seeds

The maintenance of native gene pools and the preservation of genetic variation and adaptive gene combinations in natural populations also have the potential to be compromised through the deliberate release of hatchery-reared fishery stocks of a different or restricted genetic profiles (Sayer, 2001). It is important to integrate population genetic principles and baseline information on genetic diversity, population structure, and demographics of wild fish stocks to address genetic hazards and to develop a preliminary genetic risk management strategy for the fish enhancement program. Hatchery progeny derived from breeders belonging to genetically divergent stocks may, upon release, interbreed with conspecific or congeneric members of the recipient stocks. Prior to enhancement, a comprehensive genetic baseline evaluation of the wild population should be developed to describe the level and distribution of genetic diversity. The baseline can be used as a basis to determine an effective population or brood stock size to minimize the undesirable genetic effects of inbreeding, changes allele frequencies, and loss of alleles. The monitoring should take place over a long enough period to observe possible short term fluctuation or long-term change (Blankenship and Leber, 1995).

Presage

Probably the most important aspect of aquaculture as an influence on biodiversity is the negative impact of introducing new species or modified genotypes “said Dr. James Diana of University of Michigan in 2009. Between intentional selection, founder effects, genetic drift, and inadvertent artificial selection as a result of the different rearing environment, farmed fish can show significant genetic changes by the fifth or sixth generation (Roberge et al., 2006). This domestication process can "reduce the ability of fish to survive in the wild extremely quickly: even a few generations of domestication can have substantial negative effects on natural reproduction in the wild (Araki et al., 2007)." When they escape, these fish not only compete for resources with wild fish, but they can significantly impact the wild gene pool through interbreeding (Castillo et al., 2008; Thorstad et al., 2008), resulting in reduced survival and performance of wild fish. Between intentional selection, founder effects, genetic drift, and inadvertent artificial selection as a result of the different rearing environment, farmed fish can show significant genetic changes by the fifth or sixth generation (Roberge et al., 2006). This domestication process can "reduce the ability of fish to survive in the wild extremely quickly: even a few generations of domestication can have substantial negative effects on natural reproduction in the wild (Araki et al., 2007)." When they escape, these fish not only compete for resources with wild fish, but they can significantly impact the wild gene pool through interbreeding (Castillo et al., 2008; Thorstad et al., 2008), resulting in reduced survival and performance of wild fish. "…… sea cages protect farm fish from the usual pathogen-control mechanisms of nature … but not from the pathogens themselves.……" said Dr. Neil Frazer, University of Hawaii, 2009. Proactively charting a sustainable path is thus the challenge before us to initiate stocking of specific pathogen-free wild juveniles or pre-adults or adults in sea cages.

Sea-cage gene banks

The gene banking program has already flourished in the Persian Coasts with Sheim and Sobaity (Saghavi et al., 2001). Gonadal cycles in caged and fattened Sheim larvae is a serious matter of reproductive research in
during 16 months out of the 42-month study period. Mangrove snapper, whereas during 29 months over the same time frame. The tiger grouper, Epinephelus fuscoguttatus, and estuary grouper, E. coioides, were inferior to broodstock held in the sea cages. The performance of both grouper species in the onshore tanks was inferior to broodstock held in the sea cages. Epinephelus fuscoguttatus maintained in onshore tanks spawned during only 5 months of the 42-month study period, whereas Epinephelus fuscoguttatus held in the sea cages spawned during 29 months over the same time frame. P. areolatus held in onshore tanks over the same period did not spawn, whereas P. areolatus held in sea cages spawned during 16 months out of the 42-month study period.

Fish Recruitment around cages

Fish-farms covering an area of just 1 hectare may generally have up to 40 tons of wild fish around them (Dempster et al., 2004). Large aggregations of wild fish occur around fish-farms in Mediterranean Spain (Dempster et al., 2002), Greece (Smith et al., 2003; Themeyer et al., 2003), the Canary Islands (Boyra et al., 2004; Tuya et al., 2005, 2006), Scotland (Carss, 1990), Norway (Bjordal and Skar, 1992), Indonesia (D. McKinnon pers. comm.) and Australia (Dempster et al., 2004; Felsing et al., 2005). Wild fish that gather at farms tend to be large adults (Dempster et al., 2002). This is important as the ‘big ones’ do most of the spawning and produce the next generation (Birkeland & Dayton, 2005). The constant supply of high protein food available around farms when feed is lost through the cages also means these big fish are in better body condition than their wild counterparts elsewhere in the sea (Skog et al., 2003; Fernandez Jover et al., 2006). Better condition increases the spawning success of fish (Izquierdo et al., 2001). Marine protected Areas (MPAs) designed to enhance fisheries generally aim to increase the number of large-sized fish to enhance the spawning stock and enable ‘spillover’ of both larvae and adults into surrounding areas (Roberts et al., 2001). New ecological knowledge shows that creating no-fishing Marine Protected Areas at coastal aquaculture sites will boost coastal fish stocks. Though marine aquaculture and conservation have been largely opposing forces, to secure the best deal for coastal fish stocks, fish-farmers and conservationists should work together.

Case witnesses of cage spawning

Rimmer et al., 2013 maintained the broodstock of tiger grouper Epinephelus fuscoguttatus and squaretail coralgrouper Plectropomus areolatus in sea cages near Rurut Island, Andaman and Nicobar Islands, India, and monitored their spawning performance from June 2007 to December 2010. Broodstock fish of both species were also maintained in onshore tanks fitted with recirculating filtration systems, but the spawning performance of both grouper species in the onshore tanks was inferior to broodstock held in the sea cages. Epinephelus fuscoguttatus maintained in onshore tanks spawned during only 5 months of the 42-month study period, whereas Epinephelus fuscoguttatus held in the sea cages spawned during 29 months over the same time frame. P. areolatus held in onshore tanks over the same period did not spawn, whereas P. areolatus held in sea cages spawned during 16 months out of the 42-month study period.

Broodstock (mouse grouper, Cromileptes altivelis, tiger grouper, Epinephelus fuscoguttatus, and estuary grouper, E. coioides) of a pilot fish culture project in the Komodo area (Flores, Indonesia) kept in floating fish cages with a surface area of 16 m² and a depth of 6 m, reproduced naturally without hormonal treatment, facilitated by the water depth and allowance of provision for good water quality, ambient and stable water temperature and reduced stress (Sudaryanto et al., 2004). Spontaneous spawning occurred 5–10 times a month in floating net cage for wild Epinephelus suillus (Valenciennes) as natural spawning phenomena in captivity (Toledo et al., 1993).

Fish farms offering an area of just 1 hectare may generally have up to 40 tons of wild fish around them (Dempster et al., 2004). Large aggregations of wild fish occur around fish-farms in Mediterranean Spain (Dempster et al., 2002), Greece (Smith et al., 2003; Themeyer et al., 2003), the Canary Islands (Boyra et al., 2004; Tuya et al., 2005, 2006), Scotland (Carss, 1990), Norway (Bjordal and Skar, 1992), Indonesia (D. McKinnon pers. comm.) and Australia (Dempster et al., 2004; Felsing et al., 2005). Wild fish that gather at farms tend to be large adults (Dempster et al., 2002). This is important as the ‘big ones’ do most of the spawning and produce the next generation (Birkeland & Dayton, 2005). The constant supply of high protein food available around farms when feed is lost through the cages also means these big fish are in better body condition than their wild counterparts elsewhere in the sea (Skog et al., 2003; Fernandez Jover et al., 2006). Better condition increases the spawning success of fish (Izquierdo et al., 2001). Marine protected Areas (MPAs) designed to enhance fisheries generally aim to increase the number of large-sized fish to enhance the spawning stock and enable ‘spillover’ of both larvae and adults into surrounding areas (Roberts et al., 2001). New ecological knowledge shows that creating no-fishing Marine Protected Areas at coastal aquaculture sites will boost coastal fish stocks. Though marine aquaculture and conservation have been largely opposing forces, to secure the best deal for coastal fish stocks, fish-farmers and conservationists should work together.
Sea cage gene inventory pays

MPAs may have positive effects on fish stock abundance, recruitment and age structure, thus contributing to fisheries resources and productivity, stability and resilience. Four main processes explain the potential benefits of MPAs for fisheries: (1) spillover of fishable biomass outside of the reserve, (2) larvae dispersal from highly productive areas, (3) protection of essential habitats (spawning and nurseries grounds) and (4) reduction in overall fishing mortality in case of overexploited stock (Mesnildrey et al., 2013). A high priority in spatial design of MPAs should be assigned to the protection of essential habitats that play a crucial role in the life cycle of exploited resources. While spillover effects often appear limited, larvae dispersal and juvenile protection may have more significant effects at the stock scale, justifying some strict restrictions on all human activities, especially in spawning areas and nursery grounds (Mesnildrey et al., 2013).

The Central Marine Fisheries Research Institute (CMFRI) experts in India have recommended setting up of a common gene bank for vulnerable fish species besides setting up fish sanctuaries for improvement of natural stocks in order to mitigate the impacts of climate change on fish stock and marine ecosystem (Times of India report, 2016). The development of a ‘conservation sea cage’ rearing strategy for wild salmon is a five-year funding by Government of Canada, National Conservation Plan (Canadian Aquaculture R&D Review, 2015). Gene banking of wild finfishes in deep sea cage should be considered as a tool that can be efficiently implemented in an integrated framework for an ecosystem approach to fisheries management. The golden rule of thumb is that the genetic stock deployed in offshore cages is completely locally derived/caught. Developing a proactive approach to the industry drawing on the lessons and insights of

continued on page 38
References:

Rainbow trout are rovers. Their braveness to explore new habitats and their adaptability to various environments have made trout a perfect species for aquaculture. The trout as pioneering species in the sector has pathed the way also for other fish species in terms of nutritional requirements, feed manufacturing, farming systems and certifications. The knowledge obtained through research on trout has led to a comprehensive understanding of nutritional and physical feed quality as well as raw material quality and its impact on nutrient digestibility, feed palatability and faeces quality. As far as applicable, the knowledge obtained in research on trout has also been introduced into feeds for other species.

Raw material nutrient digestibility

In recent years, feed for rainbow trout has undergone major changes in raw material selection and composition. Institutional and industrial research has led to an understanding of the nutritional requirements of trout that is only matched in few other fish species. As one example, it was possible to reduce the dependency on marine raw materials in feed formulations, which used to be the reference for nutritional quality. However, raw materials provide nutrients to a feed. But not all nutrients from a raw material are accessible for fish. Some raw materials contain more others less accessible nutrients. Accessible nutrients can also be described as digestible nutrients. Digestible nutrients are the nutrients that are absorbed by fish from a feed between feed intake and faeces excretion. Thus, digestible nutrients are ingested nutrients minus nutrients excreted via faeces. Consequently, the nutrients having value for fish are the ones it can digest. Thus, a stable content of digestible protein and energy in the feed is more relevant than the total content of protein and energy in the feed or the selection of raw materials. Providing the optimum combination of digestible protein and digestible energy is paramount for growth performance of fish. Formulating feeds according to fixed levels of digestible protein and energy outbalances varying numbers of total protein and total energy in a raw material. Furthermore, formulating feeds according to nutrient digestibility is the closest one can do to stabilize feed performance on a fish farm.

In rainbow trout, raw material nutrient digestibility is commonly determined in feeding trials. Testing in vivo requires provision of various batches of test feed. This allows to also test a raw material in production, its impact on feed palatability and eventually faeces quality. The test feeds are produced under pilot scale and contain an inert marker. The marker is fully indigestible. It passes the digestive tract of fish without affecting feed digestibility. From the amount of marker found in the faeces one can calculate the amount of feed it represents. Collection of faeces is therefore required. During the feeding trials, faeces required for analysis are separated from the water column in faeces collectors. From there, the faeces are extracted and analysed for nutrient content and concentration of the inert marker. The nutrient content of the faeces is then compared with the nutrient content in the feed and a raw material under investigation. Eventually the nutrients ingested by the fish and the nutrients excreted via faeces can be compared. This comparison gives so called Apparent Digestibility Coefficients (ADCs). The ADCs allow comparisons between nutrient digestibility of different raw materials. In principle, ADCs for dry matter, protein, amino acids, fat, fatty acids, ash and certain minerals are determined for each raw material from each supplier and supplying factory. Once a catalogue for ADCs of all raw materials is established, the feed formulation can be done based on nutrient digestibility.
Rainbow trout are voracious eaters. Under optimum environmental conditions, trout have an enormous capacity for feed intake and feed digestion. Thus, the faster and more the fish can eat, the quicker it will grow.

Raw material selection and physical feed quality can impact feed intake and digestion rates. The physical quality of the feed is hereby closely linked to the raw materials used in formulation. It has been observed, that e.g. trout may voraciously eat a feed portion given in the morning. A second feeding later that day may show a lack of appetite. Then, lack of palatability is sometimes claimed to be the reason of reduced feed intake. However, lack of palatability would have been apparent in the morning feeding already. The sudden lack of appetite will more likely be linked to slow digestion rate of the feed in the fish. Slow digestion rate is caused by disadvantageous physical feed quality and reduced nutrient digestibility. As an example, the surface structure, pore volume and pore distribution of a feed pellet impacts its water absorption speed in the stomach of a fish. The faster the pellet falls apart in the stomach the earlier feed particles enter the gut for absorption of nutrients. Raw materials influence the pellet porosity and consequently water stability – hereby impacting feed intake.

Faeces quality

Through feed experiments with trout kept in aquaria, in laboratory tanks and on commercial fish farms, com-
Comprehensive knowledge has also been obtained on feed composition and raw material impacts on faeces quality. This plays an important role in modern recirculating fish farms, where trout arguably is the pioneering species. For optimal water treatment, most of the faeces material shall be separated from the water before it can reach the biofilter. Thus, when formulating feeds for trout in recirculating systems, raw materials are also selected by their impact on faeces structure and weight. Although different feeds can give same growth performance and contain the same amount of nutrients, they can vary in faeces quality due to raw material selection. Some raw materials tend to give fluffy and watery faeces, others will give particularly heavy faeces. Then, some raw materials will give pale faeces while other raw materials will lead to dark coloured faeces. Then, certain raw materials can result in sticky faeces while others give faeces that hardly aggregate and remain small, separate particles.

When formulating a feed for trout, a target for faeces quality is required. On many water recirculating fish farms, aggregated, stable and relatively fast sinking fish faeces contribute best to cleaning of water. However, compared to terrestrial livestock where farming systems are standardized, no recirculating fish farm is alike another. Although similar methods for faeces extraction and biofiltration are applied, farms vary in design and operations. Therefore, although the nutrient composition of a feed will satisfy the requirements of the fish – effectiveness of faeces separation from the water will be different across recirculation farms. Because of the different farm set ups – there is no feed formulation that can fit all. It remains to be seen, therefore, if farm design, water treatment and filtration will eventually become standardized across fish farms.

Summary

With trout being used as model fish in research and pioneer species in modern recirculation fish farming, trout feed has been on the forefront of feed development. The versatility of trout is mirrored in the composition of the feed it receives. Trout will remain a dominant species in aquaculture and also future knowledge will contribute to farm and feed development across the sector.

Example of poor faeces quality ©Aller Aqua

Power up your aquafeed too.

DISCOVER NUTRIAD’S AQUA HEALTH PROGRAM

Nutriad’s aqua team works together with researchers and producers around the globe to develop an innovative range of health promoters and optimize their application under today’s challenging production conditions. Based on natural ingredients, these specialty additives reduce the impact of diseases and parasites on the productivity of fish and shrimp. Today, our aqua-specific product lines SANACORE®, APEX®, AQUASTIM® and BACTI-NIL®, are applied in premium brands of functional feeds for fish and shrimp. Feed is much more than just nutrition.

Interested? Find your local contact at nutriad.com
The European Aquaculture Society

Since 1976, EAS has brought together individuals and companies in the sustainable development of European aquaculture - to make contacts, share information and promote multi-disciplinary research.

As a member of EAS, you are part of a network of more than 500 important aquaculture stakeholders in 40 countries that promotes multidisciplinary research and communication of research outcomes and supports young people and those from lower income countries to be a part of EAS.

Furthermore, your membership gives you the benefits of:

- requesting and sharing information and contacts;
- finding partners for actions, initiatives and projects;
- receiving regular sources of information through the EAS magazine, newsletter and peer-review scientific journal;
- having discounts on other aquaculture press;
having discounts to aquaculture events that are supported by EAS.

Our annual Aquaculture Europe events allow the chance to

• have discounts on attending the most well-attended annual European aquaculture conference and trade show;

• present and hear the latest research in all aspects of European aquaculture;

• meet old friends and make new ones.

EAS is comprised of Institutional, Individual and E-members.

No professional qualifications are required for any of the membership categories – simply an interest to participate in the development of sustainable aquaculture in Europe.

Institutional and Individual Memberships are divided into the following categories:

Reduced – for young persons aged 30 or under (proof of age required), for retired persons (certification of retired status required), or for people or organisations based in certain countries.

Standard – for all other persons and organisations.

Membership runs from January to December each year.

See the membership benefits and join online at www.easonline.org
Percid workshop in Ireland address’s issues in reproduction

The European Percid Fish Culture Group (EPFC) is an EAS thematic group on the culture of pikeperch, perch and other species of the family percidae for human consumption, stocking and conservation established in 2012. The central aim of the EPFC is to bring together all those with an interest in the culture of pike-perch, perch and other species of the family percidae. The group has been very active in recent years and is keen to expand and play a leading role in progressing the culture of the species. The group recently held a workshop in Carrick-on-Shannon Ireland focusing on percid reproduction.

The Reproduction in Percid Culture Workshop was organised by the EPFC in conjunction with Bord Iascaigh Mhara (BIM) and was held in the beautiful Carrick-on-Shannon, Ireland from the 8th-9th March 2017. The workshop was part funded by the EMFF Operational Programme 2014-2020 under the Knowledge Gateway Scheme (KGS). The purpose of the meeting was to allow for discussion on a range of issues surrounding reproduction in percid culture. The meeting was limited to 30 attendees and heavily oversubscribed indicating a large interest in the area of percid culture. Delegates from 12 European countries spent the two days discussing a wide range of issues surrounding percid reproduction.

An important aspect of the workshop and indeed the EPFC is the large presence of industrial partners and SME’s. Over 55% of the delegates were from industry including a range of companies involved in the commercial production of perch and pikeperch. Opening the workshop, Damien Toner of BIM outlined the importance and potential for perch culture in Ireland. Welcoming the delegates he asked for an open and frank discussion on technical issues within the industry and increased co-operation. The opening session allowed for all attendees to outline their activities and their hopes for the workshop. The workshop was divided into three sessions covering Broodstock Management, Spawning and larval rearing. The workshop also incorporated a visit to Keywater Fisheries Ltd. which is owned by Mr. Paul Kearney and produces juvenile European perch. The site visit afforded everyone the opportunity to visit a commercial site during spawning and was very informative. A novel split pond production system was also operational commercially during spawning and was very informative. A novel split pond production system was also operational commercially during spawning and was very informative.

The final day saw discussions on areas of future common interest and allowed the opportunity to discuss further co-operation. Areas which may potentially be explored in future concentrated around Broodstock management, nutrition and egg quality. For both percid species it was deemed necessary to stop the use of wild broodstock to have a starting point for a breeding program and to secure quality broodstock supply. Furthermore, ”stabilising” production was underlined as a key bottleneck to economic success, which relates to standardised operation procedures as well as sharing best practices among practitioners. Cost reduction especially in RAS would be a good indicator for the success of the stabilisation of production. For improvement of larval rearing in both species, workshop participants encouraged the industrial production of live feed and especially alternative live feed species like microalgae and copepods. Participants also pointed out the lack of knowledge in nutritional requirements especially in broodstock and the initial larval start-up phase in pikeperch and a need for better understanding of the interaction between microbiota and nutrition in the larval rearing phase.

In Eurasian perch, participants highlighted the recent progress in the industrial application of hormonal induction protocols, especially to improve synchronization of spawning, in order to stabilise the consistency in reproduction. New methods and routines of broodstock induction and cryo-preservation of male gametes are considered relevant fields of future research and development to enable ”stabilised” production. A common notion from more experienced industrial producers was to have a greater understanding of the reasons for production being successful or not in reproduction, with suggestions to keep a minute track record of broodstock handling and larval rearing. Furthermore, it was realised that the role of different light regimes in broodstock maintenance and larval rearing is poorly understood and deemed of high relevance for the industry. Good out-of-season reproduction success in July-October is considered a main goal and key to success for every hatchery. The focus amongst Irish producers is also the further development of a profitable Irish organic aquaculture sector.

Ultimately, producers reflected on the current dependency of producers on the market size of currently developed (niche) markets, namely in Switzerland. Even though the current Swiss market situation creates interesting incentives to start up and/or expand production for both species, it is anticipated that access to further markets and diversified product categories need to be developed.

Given the success of the event, the EPFC hope to host additional targeted workshops in the future. If you are interested in joining the European Fish Culture Group, please visit the group’s website www.epfc.net.
SEPTMBER 2017

Larvi 2017 - 7th Fish and Shellfish Larviculture Symposium
Ghent, Belgium, September 4-7, 2017
Capitalising on the previous “larvi” symposia (in ’91, ’95, ’01, ’05, ’09, ’13), the Aquaculture R&D Consortium of Ghent University and the Norwegian University of Science and Technology (NTNU) have joined again in organizing “larvi’17” and are inviting the academic as well as the private sector to attend the 7th Fish and Shellfish Larviculture Symposium. Bringing together European and non-European stakeholders, the latest progress in academic research and in the sector will be reviewed, problems identified and avenues for future collaboration explored.
Contact: Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure F, Coupure Links, 653, B-9000 Gent, Belgium. Tel: +32-9-264 37 54; Fax: +32-9-264 41 93; E-mail: larvi@UGent.be. Web: http://www.aquaculture.UGent.be

18th International Conference on Disease of Fish and Shellfish
Belfast, Northern Ireland, September 4-7, 2017
Organised by The European Association of Fish Pathologists. Info: www.eafp2017.com

8th International Symposium on Sturgeons
Vienna, Austria, September 11-17, 2017
The upcoming venue will be an all-European effort to bring together the sturgeon experts worldwide. For more information see http://www.iss8.info/index.php/iss8home.html

12th Icelandic Fisheries Exhibition
Smárinn, Kópavogur, Iceland, September 13-15, 2017
A must for all commercial fisheries organisations and associated businesses, the three year cycle of the show is a direct response to the wishes of the exhibiting companies. This ensures that they have new products on display at each event, and as a result the exhibition has constantly grown since its inception in 1984.
Contact: Marianne Rasmussen-Coulling, Events Director, Mercator Media Ltd, UK. Tel: +44 1329 825335; Fax: +44 1329 550192; Email: mrasmussen@mercatormedia.com. Url: http://www.icefish.is

4th International Carp Conference 2017
Zagreb, Croatia, September 21. – 22, 2017
The Croatian Chamber of Commerce - The Warm Water Farming Section CCE organizes this year IV. International Carp Conference 2017. The Carp Conference is held biannually in European Union countries where carp farming and production is of major importance in the aquaculture sector. It is primarily intended for carp producers, various experts, veterinarians and scientists - universities and research institutes. The renowned experts will discuss current topics such as: consumer perception, new strategic trends in development, the importance of farms in conservation of ecosystems, as well as other important topics for the sector such as economic losses caused by cormorants. A special block of lectures will be devoted to the diseases and dangers of carp breeding, and participants will also be informed about current European projects in this area. The 4th International Carp Conference provides a unique opportunity to exchange experiences and, as such, is an indispensable place for interaction between experts and breeders.
The entire conference program will be simultaneously translated into Croatian, English, German and Polish languages.
Contact: Phone: (00) 385 1 4561 620; Fax: (00) 385 1 4561 545; Email: zradan@hgk.hr; Website: www.carpproject.hgk.hr

OCTOBER 2017

Aquaculture Europe 2017 - Cooperation for Growth
Dubrovnik, Croatia. October 16-20, 2017
Contact for abstracts and registration: EAS Conference Organiser, John Cooksey, MF Cooksey Conference Management, AE2015 Conference, P.O. Box 2302, Valley Center, CA 92082, USA. Tel: +1 760 751 5005; Fax +1 760 751 5003; E-mail: worldaqua@was.org
Contact for industry and media sponsorship opportunities: Mario Stael, MAREVENT, Begijnengracht 40, 9000 Gent, Belgium. Tel/Fax: +32 9 2334912; E-mail: mario@marevent.com; Web: www.marevent.com
General information: European Aquaculture Society, Slijkensesteenweg 4, 8400 Oostende, Belgium. Tel. +32 59 32 38 59; Email: ae2017@aquaeas.eu
Url: www.aquaeas.eu

NOVEMBER 2017

COLUMBUS International Blue Growth
Brussels, Belgium, November 7, 2017
An international forum to bring together actors interested in sharing best practice and learning about initiatives and sectoral progress in Knowledge Transfer. Info Project Manager: Cliona Ni Cheallacháin (cliona@aquatt.ie); www.columbusproject.eu

continued on page 46
JUNE 2018

18th International Symposium on Fish Nutrition and Feeding
Las Palmas de Gran Canaria, Canary Island, Spain, June 3rd - 7th, 2018
The program will review the current status of fish nutrition research and development, identifying new frontiers and further research needs in the field of aquaculture nutrition. The meeting will cover all aspects of nutritional science, from precise quantification of requirements for specific production performance criteria, assessing the value of novel feed ingredients and additives of nutritional or technological interest. The contributions will stress the importance of nutrition and feeding on health and physiological well-being of aquatic organisms affecting production performance and the quality and safety of farmed seafood. Studies will also include the use of the latest technical advances in nutrigenomics, metabolomics, epigenetics, big data processing, etc.
Email: info@isfn2018.com; Url: www.isfn2018.com

AUGUST 2018

AQUA 2018 - Theme: #We R Aquaculture
Montpellier, France. August 25-29, 2018
This event will comprise a scientific conference, trade exhibition, industry forums, workshops, student events and receptions and will highlight the latest aquaculture research and innovation to underpin continued growth of this exciting food production sector. The AQUA events are co-organised by the European Aquaculture Society (EAS) and the World Aquaculture Society (WAS) and are held every six years.
Info: AQUA 2018 Conference Manager, P.O. Box 2302 • Valley Center, CA 92082 USA, Tel: +1-760-751-5005 • Fax: +1-760-751-5003;
Email: worldaqua@was.org; www.was.org; www.aquaeas.eu
Blue is the new green...

As much as 70% of the globe is covered by water. Yet, only 2% of the world’s food supply comes from the ocean. Everybody agrees that in the future this has to change. More food needs to come from the ocean. We also need to produce protein more efficiently, and fish has the potential to do this.

Blue is the new green.

MARINEHARVEST.COM
AQUA 2018

We are the producers, the investors, the suppliers, the processors, the vendors, the scientists, the educators, the students and the consumers of farmed aquatic products.

« We R Aquaculture »!

AQUA 2018 is co-organised by the European Aquaculture Society (EAS) and the World Aquaculture Society (WAS). More at www.was.org and www.aquaeas.eu

AQUA 2018 will celebrate the fact that aquaculture is one of the most important food production industries in the world. Aquaculture is the most efficient producer of high quality food and contributes to global health and wealth. Aquaculture respects the environment, creates employment and offers significant investment opportunities.

AQUA 2018 will take place from August 25-29 in the beautiful French city of Montpellier and will comprise a scientific conference, trade exhibition, industry forums, workshops, student events and receptions. The event will highlight the latest aquaculture research and innovation to underpin continued growth of this exciting food production sector.

AQUA 2018 will draw on Europe and Africa, Canada, USA and Latin America as well as the Middle East and Asia Pacific region and the rest of the world to create one of the largest aquaculture trade shows in the world. The trade show definitely will have one of the widest variety of products of any trade show ever! This is your opportunity to inspect the latest in products and services for the aquaculture industry.

The AQUA events are co-organised by the European Aquaculture Society (EAS) and the World Aquaculture Society (WAS) and are held every six years. Past events were held in Nice (2000), Florence (2006) and Prague (2012).

Abstract submission online – deadline for abstracts APRIL 10, 2018
Early Bird Registration – deadline JUNE 30, 2018

Brochure and more on AQUA 2018 at www.was.org and www.aquaeas.eu